1) Опустим из А высоту АН. АН=АВ*sin 60º=2√3BH=AB*sin30º=2 HC=BC-BH=6-2=4 По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7 Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH 6:2√7=BD:2√3 BD=12√3:2√7=(6√3):√7 или (6√21):7
2) Найдем АС как в первом решении. Площадь треугольника АВС S=AC*BD:2 S=AH*BC:2 Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения: AC*BD:2=AH*BC:2 (2√7)*BD:2=(2√3)*6:2 BD=(12√3):(2√7)=(6√3):√7 или (6√21):7 -- АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
В подобных треугольниках углы равны))) поэтому основания должны быть пропорциональны: 12 / 18 = 2/3 --это возможный коэффициент подобия... т.е. нужно доказать или равенство углов при основаниях в этих (разных) треугольниках (в каждом треугольнике они равны, т.к. треугольники равнобедренные))), или вычислить отношение боковых сторон, должно получиться тоже 2/3 одна боковая сторона 10, другая = √(12²+9²) = √(9*(16+9)) = √(9*25) = 3*5 = 15 10 / 15 = 2/3 ---треугольники подобны... проверим углы при основаниях: cos(x1) = 6/10 = 0.6 cos(x2) = 9/15 = 3/5 = 0.6 и углы при основаниях равны
HC=BC-BH=6-2=4
По т.Пифагора АС=√(АН²+НС²)= √(16+12)=2√7
Прямоугольные ∆ ВDС и ∆ АНС подобны по общему острому угу С. BC:AC=BD:AH
6:2√7=BD:2√3
BD=12√3:2√7=(6√3):√7 или (6√21):7
2) Найдем АС как в первом решении.
Площадь треугольника АВС
S=AC*BD:2
S=AH*BC:2
Т.к.площадь одной и той же фигуры, найденная любым одна и та же, приравняем полученные выражения:
AC*BD:2=AH*BC:2
(2√7)*BD:2=(2√3)*6:2
BD=(12√3):(2√7)=(6√3):√7 или (6√21):7
--
АС можно найти и по т.косинусов, а площадь ∆ АВС по формуле S=a*b*sinα:2
поэтому основания должны быть пропорциональны: 12 / 18 = 2/3 --это
возможный коэффициент подобия...
т.е. нужно доказать или равенство углов при основаниях в этих (разных) треугольниках (в каждом треугольнике они равны, т.к. треугольники равнобедренные))), или вычислить отношение боковых сторон, должно получиться тоже 2/3
одна боковая сторона 10, другая = √(12²+9²) = √(9*(16+9)) = √(9*25) = 3*5 = 15
10 / 15 = 2/3 ---треугольники подобны...
проверим углы при основаниях:
cos(x1) = 6/10 = 0.6
cos(x2) = 9/15 = 3/5 = 0.6 и углы при основаниях равны