Крыша имеет форму пирамиды с квадратным основанием 4,5м×4,5м и углом наклона грани к основанию в 45°. Сколько листов железа размером 70см×140см нужно для покрытия крыши, если на отходы нужно добавить 10% площади крыши?
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
Найдем сторону вписанного квадрата, для этого воспользуемся т.Пифагора. Рассмотрим треугольник, образующийся из-за вписания одного квадрата в другой. Он прямоугольный (так как 1 его угол - угол квадрата), его меньший катет равен 4а/(7+4)=4а/11, а его больший катет равен 7а/11. Найдем гипотенузу этого треугольника (она же будет являться и стороной квадрата). По т.Пифагора 16а²/121+49а²/121=65а²/121, тогда √65а²/121' - это сторона квадрата, следовательно √65а²/121'•√65а²/121'=65а²/121 - S вписанного квадрата.
ответ: S=65a²/121.
abcd - трапеция; ad - нижнее основание; bc - верхнее основание; o - точка пересечения диагоналей. ef проходит через точку o и параллельно основаниям. mn проходит через точку o и перпендикулярно основаниям - высота трапеции. e∈ab; f∈cd; m∈bc; n∈ad
тр-к boc подобен тр-ку aod. отношение площадей подобных треугольников равно квадрату отношения соответственных линейных размеров, т.е. сторон и высот. значит, ad: bc=3^: 1; mo: on=1: 3; mo: mn=1: 4;
пусть bc=x⇒ad=3x; mo=y; ⇒on=3y; mn=4y
площадь трапеции abcd равна: s=1/2(ad+bc)*mo=1/2(x+3x)*4y=8xy
выразим через s площади befc и aefd.
площадь aefd равна сумме площадей aofd и aeo.
рассмотрим тр-ки acd и ocf. они подобны. их высоты относятся как 4: 1, а площади как 16: 1. площадь acd равна 1/2*3x*4y=6xy. площадь ocf равна 1/16*6xy=3/8*xy. площадь aofd равна разности площадей acd и ocf:
6xy-3/8*xy=45/8*xy
рассмотрим тр-ки abc и aeo. они подобны. их высоты относятся как 4: 3, а площади как 16: 9. площадь abc равна 1/2*x*4y=2xy. площадь aeo равна 9/16*2xy=9/8*xy. площадь aefd равна: 45/8*xy+9/8*xy=54/8*xy=27/4*xy
площадь befc равна разности площадей abcd и aefd:
8xy-27/4*xy=5/4*xy
s(befc): s(aefd)=5/4*xy: 27/4*xy=5: 27