Рассмотрим треугольники ВОЕ и DOC. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого: - углы ВОЕ и DOC равны как вертикальные; - углы ОВЕ и ODC равны, т.к. диагональ BD делит углы квадрата пополам. Для подобных треугольников можно записать отношение сходственных сторон: ВЕ : DC = BO : DO = 1 : 2, отсюда DO=2*BO Рассмотрим треугольники DHF и ВНС. Они также подобны по первому признаку подобия: - углы DHF и ВНС равны как вертикальные; - углы HDF и HBC равны, т.к. диагональ BD делит углы квадрата пополам. Для подобных треугольников можно записать отношение сходственных сторон: FD : CB = DH : BH = 1 : 2, отсюда ВН=2*DH Мы вывели, что DO=2*BO и ВН=2*DH. Диагональ BD можно представить так: BD=BO+DO=BO+2*BO=3ВО или так: BD=BH+DH=2*DH+DH=3DH Тогда 3BO=3DH, BO=DH Отрезок ВН можно представить так: ВН=BO+OH. Зная, что BO=DH и ВН=2*DH, получаем: 2*DH=DH+OH, отсюда OH=DH BO=DH, OH=DH, значит BO=DH=OH.
Треугольники SCD и SAB - прямоугольные и центр описанной около них окружности лежит в центре их общей гипотенузы SB. Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой же точке и радиус его равен половине ребра SB. Ребро SB найдем по Пифагору: SB=√(L²+b²). Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²). (ответ). Найдем объем пирамиды. Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника АВС. (То есть грань ASC не перпендикулярна плоскости основания). Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую проецируется вершина S пирамиды, так как по теореме, обратной теореме о трех перпендикулярах, "прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота, биссектриса и медиана этого треугольника. Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)] Объем пирамиды Vп=(1/3)*So*H. Или Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)]. (ответ).
Проверим решение на конкретных числах. Пусть b=4, L=3, β=60. Тогда SB=√(L²+b²)=5. PB=√(16+4)=√12=2√3. AH=4√3/3, SH=√(9-48/9)=√33/3. (первый вариант). HP=2√3/3, SP=√(L²-CP²)=√5. SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант). HB=HP+PB=8√3/3. SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант). Из моего решения: SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.
- углы ВОЕ и DOC равны как вертикальные;
- углы ОВЕ и ODC равны, т.к. диагональ BD делит углы квадрата пополам.
Для подобных треугольников можно записать отношение сходственных сторон:
ВЕ : DC = BO : DO = 1 : 2, отсюда DO=2*BO
Рассмотрим треугольники DHF и ВНС. Они также подобны по первому признаку подобия:
- углы DHF и ВНС равны как вертикальные;
- углы HDF и HBC равны, т.к. диагональ BD делит углы квадрата пополам.
Для подобных треугольников можно записать отношение сходственных сторон:
FD : CB = DH : BH = 1 : 2, отсюда ВН=2*DH
Мы вывели, что DO=2*BO и ВН=2*DH. Диагональ BD можно представить так:
BD=BO+DO=BO+2*BO=3ВО или так:
BD=BH+DH=2*DH+DH=3DH
Тогда 3BO=3DH, BO=DH
Отрезок ВН можно представить так:
ВН=BO+OH. Зная, что BO=DH и ВН=2*DH, получаем:
2*DH=DH+OH, отсюда OH=DH
BO=DH, OH=DH, значит BO=DH=OH.
Следовательно, центр шара , описанного вокруг пирамиды SABC лежит в этой же точке и радиус его равен половине ребра SB. Ребро SB найдем по Пифагору: SB=√(L²+b²).
Значит OA=OC=OB=OS=Rш=(1/2)√(L²+b²), а его объем равен Vш=(4/3)*πR³ или
Vш=(4/3)*(1/8)π(L²+b²)√(L²+b²)=(1/6)*(L²+b²)√(L²+b²). (ответ).
Найдем объем пирамиды.
Опустим перпендикуляр SH из точки S на плоскость АВС. Основание этого перпендикуляра Н попадет на прямую НВ в плоскости АВС вне треугольника АВС. (То есть грань ASC не перпендикулярна плоскости основания). Чтобы найти точку Н, надо в плоскости АВС провести перпендикуляры к сторонам АВ и СВ в точки А и С. Их пересечение и даст нам искомую точку Н, в которую проецируется вершина S пирамиды, так как по теореме, обратной теореме о трех перпендикулярах, "прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции". Значит SH - искомая высота. В равнобедренном треугольнике АВС отрезок ВР - высота, биссектриса и медиана этого треугольника.
Тогда в прямоугольном треугольнике ВАН угол <ABH=(β/2), а гипотенуза НВ=b/Cos(β/2). В прямоугольном треугольнике SHB по Пифагору катет SH=√ (SB²-HB²) или
SH=√[(√(L²+b²))²-(b/Cos(β/2))²]=√[(L²+b²)-(b²/Cos²(β/2)]
Объем пирамиды Vп=(1/3)*So*H. Или
Vп=(1/3)*b²Sinβ/2*√[(L²+b²)-(b²/Cos²(β/2)]. Или
Vп=(1/6)*b²Sinβ*√[(L²+b²)-(b²/Cos²(β/2)]. (ответ).
Проверим решение на конкретных числах.
Пусть b=4, L=3, β=60.
Тогда SB=√(L²+b²)=5.
PB=√(16+4)=√12=2√3.
AH=4√3/3, SH=√(9-48/9)=√33/3. (первый вариант).
HP=2√3/3, SP=√(L²-CP²)=√5.
SH=√(SP²-HP²)=√(5-12/9)= √33/3 (второй вариант).
HB=HP+PB=8√3/3.
SH=√(SB²-HB²)=√(25-199/9)=√33/3. (третий вариант).
Из моего решения:
SH=√[(L²+b²)-(b²/Cos²(β/2)]=√[(9+16)-(16*4/3]=√(11/3)=√33/3.