так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
Объяснение:
так как боковые стороны равны, то трапеция равнобедренная, проведем две высоты в трапеции, расстояние между высотами и концами оснований равно (13-9)/2=2(см)
получим прямоугольный треугольник с известными двумя сторонами 4 и 2. Это прямоугольный треугольник, если в прямоугольном треугольнике катет равен половине гипотенузы, то угол лежащий против этого катета равне 30 градусов, угол трапеции равен сумме найденного угла и прямого угла, т. е 30+90=120, второй угол равен 180-120=60
ответ 120, 120, 60, 60
Дано:
MABCD - правильная пирамида
MO⊥(ABCD)
MA = MB = MC = MD = 10
P(ABCD) = 24√2
-------------------------------------------------------------------------
Найти:
SO - ?
В правильном пирамиде в основании лежит квадрат ABCD, значит мы находим сторону основание квадрата:
AB = BC = CD = AD = P/4 = 24√2 / 4 = 6√2
Далее мы находим диагональ квадрата AC по такой формуле:
AC = AB√2 = 6√2 × √2 = 6×(√2)² = 6×2 = 12
Далее мы находим половину диагонали квадрата в правильной пирамиде:
AO = AC/2 = 12/2 = 6 ⇒ AO = OC = 6
И теперь находим высоту MO по теореме Пифагора:
AM² = AO² + MO² ⇒ MO = √AM² - AO²
MO = √10² - 6² = √100-36 = √64 = 8
ответ: MO = 8