Люди . У рівнобедренему трикутнику бісектриса кута при основі утворює з бічною стороною кут 26 градусів. Знайти кут який утворює з бічною сторона медіана цього трикутника, проведена до основи
Из точки, которая находится на расстоянии 8 см от прямой, проведены к ней две наклонные, образующие с прямой углы 30 и 45 градусов. Найдите расстояние между основаниями наклонных, сколько решений имеет задача.
Вариант 1 - основания наклонных находятся по разные стороны от проекции точки на данную линию.
1) Длина проекции наклонной, образующей с ней угол 30°, равна:
8 · ctg 30° = 8√3 см
2) Длина проекции наклонной, образующей с ней угол 45°, равна:
Значит так. Чертим прямоугольный треугольник. Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5 Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу) AB=4+x CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20 Разбираем квадратичное уравнение: x²-10x-20=0 D= 100+4*20=180 √D= 6√5 x_{12} = 5+-3√5 x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5. ответ: 5+3√5
См. Объяснение
Объяснение:
Задание
Из точки, которая находится на расстоянии 8 см от прямой, проведены к ней две наклонные, образующие с прямой углы 30 и 45 градусов. Найдите расстояние между основаниями наклонных, сколько решений имеет задача.
Вариант 1 - основания наклонных находятся по разные стороны от проекции точки на данную линию.
1) Длина проекции наклонной, образующей с ней угол 30°, равна:
8 · ctg 30° = 8√3 см
2) Длина проекции наклонной, образующей с ней угол 45°, равна:
8 · ctg 45° = 8 см
3) Расстояние между основаниями наклонных:
8√3 + 8 = 8 (√3 + 1) см ≈ 8 · (1,732 + 1) = 8 · 2,732 ≈ 21,86 см
Вариант 2 - основания наклонных находятся по одну сторону от проекции точки на данную линию.
1) Длина проекции наклонной, образующей с ней угол 30°, равна:
8 · ctg 30° = 8√3 см
2) Длина проекции наклонной, образующей с ней угол 45°, равна:
8 · ctg 45° = 8 см
3) Расстояние между основаниями наклонных:
8√3 - 8 = 8 (√3 - 1) см ≈ 8 · (1,732 - 1) = 8 · 0,732 ≈ 5,86 см
ответ: в данной задаче - 2 решения:
1) если основания наклонных находятся по разные стороны от проекции точки на данную линию, то расстояние между ними равно
8(√3+1) см ≈ 21,86 см;
2) если основания наклонных находятся по одну сторону от проекции точки на данную линию, то расстояние между ними равно
8(√3-1) см ≈ 5,86 см.
Решение: Рассмотрим треугольник ACH: Так как CH - высота,то этот треугольник прямоугольный. Следовательно CH - катет и мы находим его по теореме Пифагора: CH = √6^²-4^² = √36-16 = √20 = 2√5
Я предлагаю рассмотреть треугольник ABC и найти x через CB(не знаю можно ли так,как я решил,но я запишу)
AB=4+x
CB=√AB²-AC² = √(4-x)²-6² = √x²-10x-20
Разбираем квадратичное уравнение:
x²-10x-20=0
D= 100+4*20=180 √D= 6√5
x_{12} = 5+-3√5
x2 - не подходит,так как получается отрицательным,поэтому BH = 5+3√5.
ответ: 5+3√5