Рассмотрим сечение призмы, перпендикулярное всем трём боковым рёбрам. Это треугольник. обозначим стороны этого треугольника a, b, c. каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см. площадь двух граней дана. S_1 = a*5 = 20 a = 4 см S_2 = b*5 = 20 b = 4 см Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов. треугольник сечения равнобедренный с углом при вершине 60° Угол при основании (180 - 60)/2 = 120/2 = 60° Т.е. треугольник равносторонний c = 4 см площадь третьей грани S_3 = 4*5 = 20 см^2 Полная боковая поверхность 3*20 = 60 см^2
найдем координаты середин диагоналей четырехугольника: середины ac х=(3-2)/2=0.5 y=(-1+2)/2=0.5 (0.5;0.5) середины BD х=(2-1)/2=0.5 y=(3-2)/2=0.5 Таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком параллелограмма четырехугольник АВСD - параллелограмм. Найдем длины диагоналей AC=((-2-3)^2+(-1-2))^2=(-5)^2+(-3)^2=25+9=34 BD=((2+1)^2+(3+2))^2=9+25=34 Диагонали параллелограмма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
обозначим стороны этого треугольника a, b, c.
каждая боковая грань призмы - параллелограмм, для оторого известна одна из сторон - боковое ребро призмы, 5 см.
площадь двух граней дана.
S_1 = a*5 = 20
a = 4 см
S_2 = b*5 = 20
b = 4 см
Теперь известны две стороны сечения по 4 см и угол между ними в 60 градусов.
треугольник сечения равнобедренный с углом при вершине 60°
Угол при основании
(180 - 60)/2 = 120/2 = 60°
Т.е. треугольник равносторонний
c = 4 см
площадь третьей грани
S_3 = 4*5 = 20 см^2
Полная боковая поверхность
3*20 = 60 см^2
найдем координаты середин диагоналей четырехугольника: середины ac х=(3-2)/2=0.5 y=(-1+2)/2=0.5 (0.5;0.5) середины BD х=(2-1)/2=0.5 y=(3-2)/2=0.5 Таким образом диагонали четырехугольника пересекаются в точке, что делит их пополам, поэтому за признаком параллелограмма четырехугольник АВСD - параллелограмм. Найдем длины диагоналей AC=((-2-3)^2+(-1-2))^2=(-5)^2+(-3)^2=25+9=34 BD=((2+1)^2+(3+2))^2=9+25=34 Диагонали параллелограмма ABCD равны АC=BD, за признаком прямоугольника ABCD- прямоугольник. Доказано
Объяснение: