Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.
1)При вращении прямоугольника вокруг большей стороны получается цилиндр с радиусом R, равной большей стороне, и высотой Н, равной меньшей стороне
R = 10см
H = 6см
Объём цилиндра
V = πR²·H = π·100·6 = 600π;
2)С - площадь основания пирамиды. ;
Ш-высота пирамиды ;
В - объем пирамиды ;
Л- апофема ;
а - угол между апофемой и высотой;
син - синус ;
кос - косинус ;
тан - тангенс ;
кор - корень из ;
кв. - в квадрате ;
кб. - в кубе ;
С=0.5 *(2*Л*син(а)/тан(30))*(2*Л*син(а)*кос(30)/тан(30))=
= Лкв.*синкв.(а)/кор(3) ;
Ш= Л*кос(а) ;
В=С*Ш/3=Лкб.*синкв(а)*кос(а)/(3*кор(3)).
3)извини((третье не знаю(
Одна из формул площади параллелограмма Ѕ=a•h. Очевидно, что при одинаковой площади большей будет высота, проведенная к меньшей стороне, и наоборот. Следовательно, искомой будет высота к стороне АВ ( или равной ей CD).
На рисунке в приложении высота к меньшей стороне АВ пересекается с ее продолжением. Из прямоугольного треугольника AKD высота DK=AD•sinA=6•1/3=2 (ед. длины)
Как вариант можно найти большую высоту иначе. Сначала найти длину меньшей высоты ВН=АВ•sinA, затем найти площадь S=ВН•AD и высоту DK=S:AB.