Чтобы найти периметр четырехугольника, необходимо найти длины сторон. Нам даны координаты вершин четырехугольника, значит можно рассматривать стороны (и диагонали) как векторы.
P.S. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. Все стороны параллелограмма равны - четырехугольник ромб. Диагонали ромба равны - четырехугольник - квадрат.
В данном треугольнике углы при МР равны, и потому треугольник - равнобедренный с равными МК+КР.
Биссектриса к МК делит эту сторону пополам, значит, она является и медианой. В таком случае МР=КР Но по условию и КР=МК. Если КР=МК=МР, то треугольник - равносторонний и все углы в нем равны 60° Биссектриса в нем не только и медиана, но и высота. Можно по формуле высоты ( можно и по теореме Пифагора), определить сторону. Можно и через синус 60° МР=9,6:sin(60°) МР=9,6: √3/2 МР=9,6·2:√3=19,2·√3:√3·√3=19,2·√3:3=6,4·√3 ответ:6,4·√3
Периметр равен 8√2 ед.
Диагонали АС = BD = 4 ед.
Объяснение:
Чтобы найти периметр четырехугольника, необходимо найти длины сторон. Нам даны координаты вершин четырехугольника, значит можно рассматривать стороны (и диагонали) как векторы.
Длина стороны (модуль вектора) равна:
|AB| = √((Xb-Xa)² + (Yb-Ya)²) или |AB| = √((1-(-1))²+(5-3)²) = 2√2.
|BC| = √((Xc-Xb)² + (Yc-Yb)²) или |BC| = √((3-1)²+(3-5)²) = 2√2.
|CD| = √((Xd-Xc)² + (Yd-Yc)²) или |CD| = √((3-1)²+(1-3)²) = 2√2.
|AD| = √((Xd-Xa)² + (Yd-Ya)²) или |AD| = √((1-(-1))²+(1-3)²) = 2√2.
Периметр - сумма всех сторон - равен 8√2 ед.
Точно так же и с диагоналями:
|AC| = √((Xc-Xa)² + (Yc-Ya)²) или |AC| = √((3-(-1))²+(3-3)²) = 4.
|BD| = √((Xb-Xd)² + (Yb-Yd)²) или |BD| = √((1-1))²+(1-5)²) = 4.
P.S. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм. Все стороны параллелограмма равны - четырехугольник ромб. Диагонали ромба равны - четырехугольник - квадрат.
В данном треугольнике углы при МР равны, и потому треугольник - равнобедренный с равными МК+КР.
Биссектриса к МК делит эту сторону пополам, значит, она является и медианой. В таком случае МР=КР
Но по условию и КР=МК.
Если КР=МК=МР, то треугольник - равносторонний и все углы в нем равны 60°
Биссектриса в нем не только и медиана, но и высота.
Можно по формуле высоты ( можно и по теореме Пифагора), определить сторону.
Можно и через синус 60°
МР=9,6:sin(60°)
МР=9,6: √3/2
МР=9,6·2:√3=19,2·√3:√3·√3=19,2·√3:3=6,4·√3
ответ:6,4·√3