Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
ABCD - параллелограмм. AB = 2 см, BC = 4 см, AC = 2√3 см
По теореме косинусов диагонали параллелограмма
AC² = AB² + BC² - 2 AB · BC · cos ∠B
BD² = AB² + AD² - 2 AB · AD · cos ∠A =
= AB² + AD² - 2 AB · AD · cos (180° - ∠B) =
= AB² + AD² + 2 AB · AD · cos ∠B
Так как AD = BC ⇒
BD² = AB² + BC² + 2 AB · BC · cos ∠B
Складываем почленно квадраты диагоналей.
AC² + BD² = AB² + AB² + BC² + BC²
BD² = 2 AB² + 2 BC² - AC² = 2·2² + 2·4² - (2√3)² =
= 8 + 32 - 12 = 28
BD = √28 = 2√7 см
ответ : BD = 2√7 см
Диагонали ромба взаимно перпендикулярны и точкой пересечения делятся пополам. Точка пересечения диагоналей - центр ромба и она делит высоту ромба так же пополам. В прямоугольном треугольнике, образованном половинами диагоналей и стороной ромба, катеты относятся как 3:4, значит треугольник Пифагоров (или египетский) и отношение сторон в нем равно 3:4:5. Пусть коэффициент отношения равен Х. Тогда по свойству высоты из прямого угла в этом треугольнике имеем: 12 = 3х*4х/5х => х = 5см.
Половины диагоналей равны 3х = 15см и 4х=20см, а диагонали, соответственно, равны d=30см и D=40см.
Площадь ромба равна половине произведения его диагоналей.
S = 30*40/2 = 600см².