А) Да. Сумма смежных углов пар-грамма равна 180 градусов. Значит, сумма половин этих углов равна 90 градусов. Это и означает, что биссектрисы пересекаются под прямым углом. б) Нет. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров к сторонам. На высоте ВК он лежит, только если треугольник равнобедренный, причем В вершина, а АС основание. в) Да. В равнобедренном треугольнике точка касания вписанной окружности и основания находится в середине основания. г) Нет. Пусть внешние углы равны а и 160-а, тогда внутренние равны 180-а и 180-(160-а) = 20+а. Сумма двух внутренних углов равна 180-а + 20+а = 200 градусов. А должно быть 180 градусов в ТРЕХ углах.
1. пусть апофема l и угол между апофемой и плоскостью основания в 30° тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности, r = l*cos(30°) = l√3/2 Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30) r/(a/2) = tg(30°) = 1/√3 2r√3=a 2*l√3/2*√3=a 3l = a l = 1/3a Апофема равна одной трети основания Площадь боковой поверхности S = 3*1/2*l*a = 1/2 a^2 = 50 см^2 1/2 a^2 = 50 a^2 = 100 a = 10 см 2 длина малой диагонали основания по теореме косинусов l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5 l = √5 Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда l*h = √15 h = √3 Объём параллелепипеда V=1*2√2*sin(45)*h = 2√3
Значит, сумма половин этих углов равна 90 градусов.
Это и означает, что биссектрисы пересекаются под прямым углом.
б) Нет. Центр описанной окружности лежит в точке пересечения серединных перпендикуляров к сторонам. На высоте ВК он лежит, только если треугольник равнобедренный, причем В вершина, а АС основание.
в) Да. В равнобедренном треугольнике точка касания вписанной окружности и основания находится в середине основания.
г) Нет. Пусть внешние углы равны а и 160-а, тогда внутренние равны
180-а и 180-(160-а) = 20+а.
Сумма двух внутренних углов равна 180-а + 20+а = 200 градусов.
А должно быть 180 градусов в ТРЕХ углах.
тогда проекция апофемы на плоскость основания, она же равна радиусу вписанной в основание окружности,
r = l*cos(30°) = l√3/2
Радиус вписанной окружности равностороннего треугольника (см рисунок) относится к половине основания пирамиды как tg(30)
r/(a/2) = tg(30°) = 1/√3
2r√3=a
2*l√3/2*√3=a
3l = a
l = 1/3a
Апофема равна одной трети основания
Площадь боковой поверхности
S = 3*1/2*l*a = 1/2 a^2 = 50 см^2
1/2 a^2 = 50
a^2 = 100
a = 10 см
2
длина малой диагонали основания по теореме косинусов
l^2 = 1^2+(2√2)^2-2*1*2√2*cos(45) = 5
l = √5
Если наименьшее диагональное сечение опирается на эту диагональ то высота параллелепипеда
l*h = √15
h = √3
Объём параллелепипеда
V=1*2√2*sin(45)*h = 2√3