1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
3) площадь ромба равна половине произведения его диаганалей S=(10x12):2=60 диаганали ромба пересекаются под прямым углом и делят друг друга пополам Периметр сумма длин его сторон,длина сторон одинакова чтобы найти длину стороны нужно рассмотреть один образовавшийся треугольник при пересечении диаганалей,так как углы при точке пересечения диаганалей 90° то все образававшиеся треугольники прямые,а стороны ромба являются гипотенузами этиз тр-ков, а катеты равны 10:2=5cм и 12:2=6см такак диоганали делят друг друга пополам квадрат стороныромба=5 в квадрате +6 в квадрате =25+36=61 сторона ромба равна корень квадратный из 61(теорема пифагора) P=4 умножить на кореньиз 61
Объяснение:<!--c-->
image
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
диаганали ромба пересекаются под прямым углом и делят друг друга пополам
Периметр сумма длин его сторон,длина сторон одинакова
чтобы найти длину стороны нужно рассмотреть один образовавшийся треугольник при пересечении диаганалей,так как углы при точке пересечения диаганалей 90° то все образававшиеся треугольники прямые,а стороны ромба являются гипотенузами этиз тр-ков, а катеты равны 10:2=5cм и 12:2=6см такак диоганали делят друг друга пополам
квадрат стороныромба=5 в квадрате +6 в квадрате =25+36=61
сторона ромба равна корень квадратный из 61(теорема пифагора)
P=4 умножить на кореньиз 61