В четырехугольник окружность можно вписать только в том случае, если суммы его противоположных сторон равны, то есть сумма оснований равна сумме боковых сторон, иначе в данную трапецию нельзя вписать окружность. Высота нашей трапеции равна диаметру вписанной окружности, то есть 6. В прямоугольном тр-ке, образованном боковой стороной и высотой трапеции, проведенной из конца верхнего основания, против угла 30° лежит катет, равный половине гипотенузы (боковой стороны). Тогда по Пифагору H²=х²-х²/4, где х - длина боковой стороны. Отсюда х = 4√3. Значит сумма боковых сторон и оснований = 8√3, а полусумма оснований - средняя линия трапеции равна 4√3.
Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.
Признак равенства прямоугольных треугольников по двум катетам
priznak ravenstva pryamougolnyih treugolnikov 1
Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе
priznak ravenstva pryamougolnyih treugolnikov 2
Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства по гипотенузе и острому углу
priznak ravenstva pryamougolnyih treugolnikov 3
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу
priznak ravenstva pryamougolnyih treugolnikov 4
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Высота нашей трапеции равна диаметру вписанной окружности, то есть 6.
В прямоугольном тр-ке, образованном боковой стороной и высотой трапеции, проведенной из конца верхнего основания, против угла 30° лежит катет, равный половине гипотенузы (боковой стороны). Тогда по Пифагору H²=х²-х²/4, где х - длина боковой стороны. Отсюда х = 4√3. Значит сумма боковых сторон и оснований = 8√3, а полусумма оснований - средняя линия трапеции равна 4√3.
Признаки равенства прямоугольных треугольников
Признаки равенства прямоугольных треугольников позволяют доказать равенство треугольников всего по двум парам элементов.
Признак равенства прямоугольных треугольников по двум катетам
priznak ravenstva pryamougolnyih treugolnikov 1
Если два катета одного прямоугольного треугольника соответственно равны двум катетам другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и гипотенузе
priznak ravenstva pryamougolnyih treugolnikov 2
Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства по гипотенузе и острому углу
priznak ravenstva pryamougolnyih treugolnikov 3
Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Признак равенства прямоугольных треугольников по катету и острому углу
priznak ravenstva pryamougolnyih treugolnikov 4
Если катет и острый угол одного прямоугольного треугольника соответственно равны катету и острому углу другого прямоугольного треугольника, то такие треугольники равны.
Объяснение: