а) Если треугольник BKD прямоугольный, то мы можем применить к нему т. Пифагора: BK^2+KD^2=BD^2; BD^2=5^2+12^2=169; BD=кв.кор из 169=13 и по условию BD=13см, из этого следует что треугольник BKD-прямоугольный.
б) Мы доказали , то что треугольник BKD -прямоугольный с прямым углом K следственно треугольник ABK тоже прямоугольный. Площадь прямоугольного треугольника вычисляется по формуле S=1/2*Ak*BK=1/2*4*12=24см^2
AD=AK+KD=4+5=9 Площадь параллелограмма равна произведению основания на высоту; BK*AD=12*9=108см^2
Решение: 1)B=80(по усл);AM- биссектриса(по усл);CK- биссектириса(по усл) 2)Так как CK и AM биссектрисы, то ACK=BCK и BAM=MAC. В треугольнике 180 градусов ( по теории). 3)KOM=AOC (верт). 4)Так как на против равных углов лежат равные стороны, то BK=BM и треугольник KBM- равнобедренный, значит угол K= углу M. 5)180-80/2=50 угол AOC=углу KOM=50 градусов (верт) ответ:50 градусов
а) Если треугольник BKD прямоугольный, то мы можем применить к нему т. Пифагора: BK^2+KD^2=BD^2; BD^2=5^2+12^2=169; BD=кв.кор из 169=13 и по условию BD=13см, из этого следует что треугольник BKD-прямоугольный.
б) Мы доказали , то что треугольник BKD -прямоугольный с прямым углом K следственно треугольник ABK тоже прямоугольный. Площадь прямоугольного треугольника вычисляется по формуле S=1/2*Ak*BK=1/2*4*12=24см^2
AD=AK+KD=4+5=9 Площадь параллелограмма равна произведению основания на высоту; BK*AD=12*9=108см^2
1)B=80(по усл);AM- биссектриса(по усл);CK- биссектириса(по усл)
2)Так как CK и AM биссектрисы, то ACK=BCK и BAM=MAC. В треугольнике 180 градусов ( по теории).
3)KOM=AOC (верт).
4)Так как на против равных углов лежат равные стороны, то BK=BM и треугольник KBM- равнобедренный, значит угол K= углу M.
5)180-80/2=50
угол AOC=углу KOM=50 градусов (верт)
ответ:50 градусов