Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
Примем в ∆ АВС ∠ВАС=а, ∠АСВ=с. Продолжим медиану на её длину до т.Д. Соединив вершины А и С с Д, получим параллелограмм АВСД ( из признака параллелограмма – диагонали точкой пересечения М делятся пополам). ∠САД=с (накрестлежащие при пересечении параллельных ВС и АД секущей АС). Аналогично ∠АСД=а (накрестлежащий углу ВАС.
По условию ∠АВМ=а+с. В ∆ АДВ углы при основании АВ равны а+с ⇒ АД=ВД. На том же основании в ∆ ВСД углы при СД равны а+с, и ВС=ВД. По построению ВМ=МД, ⇒ВМ =ВС:2, т.е. отношение медианы ВМ:ВС=1:2
Центр правильного треугольника - это центр описанной и вписанной окружности, и расположен он в точке пересечения высот (медиан, биссектрис).
Т.к. все высоты правильного треугольника равны между собой, эта точка делит каждую высоту ( медиану) этого треугольника по свойству медиан в отношении 2:1, считая от вершины , т.е.
АО=ВО=СО,
.Эти отрезки - проекции наклонных МА, МВ, МС
Поскольку проекции равны, то и наклонные равны. Т.е.
МА=МВ=МС
МА по т. Пифагора
МА=√ (АО²+МО²)
АО - радиус описанной окружности и может быть найден по формуле
R=a/√3
или найти длину высоты данного правильного треугольника, и 2 ее трети и будут проекциями наклонных , т.е. равны АО.
h=a√3):2=6√3):2=3√3
AO=3√3):3)·2=2√3
МА=√(АО² + МО²)=√(12+4)=4 см
Примем в ∆ АВС ∠ВАС=а, ∠АСВ=с. Продолжим медиану на её длину до т.Д. Соединив вершины А и С с Д, получим параллелограмм АВСД ( из признака параллелограмма – диагонали точкой пересечения М делятся пополам). ∠САД=с (накрестлежащие при пересечении параллельных ВС и АД секущей АС). Аналогично ∠АСД=а (накрестлежащий углу ВАС.
По условию ∠АВМ=а+с. В ∆ АДВ углы при основании АВ равны а+с ⇒ АД=ВД. На том же основании в ∆ ВСД углы при СД равны а+с, и ВС=ВД. По построению ВМ=МД, ⇒ВМ =ВС:2, т.е. отношение медианы ВМ:ВС=1:2