Напишите уравнение окружности с центром в точке
А(0; 6), проходящей через точку В (-3; 2)
2. Даны точки А(-6;0), В(-2;0),Д(4;6
Найти координаты середины отрезка АД.
3. А(0;-4),В(3;0),С(1;6) ,Д(4;2) .
Найти длину отрезков АС и ВД.
4. Дано: А (2; 1), В (0; 3)
Напишите уравнение прямой АВ.
5. Найдите периметр треугольника ABC, если известны координаты его вершин A(- 3;5), B(3; - 3) и точки M(6;1), являющейся серединой стороны BC.
(с каждой вершины выходят отрезки соединяющие ее с остальными n-1 вершинами, две из них стороны, остальные n-3 отрезка - диагонали
всего вершин n, потому количество всех диагоналей n(n-3), но так как концы отрезка принадлежат двум вершинам, то в этом произведении мы посчитали каждую диагоналей дважды, поэтому
число диагоналей n(n-3)/2)
итого
имеем для данного многоульника
n(n-3)/2=35
n(n-3)=70
- не подходит, количество вершин не может быть отрицательным
итого вершин 10
10*(10-3):2=35
в выпуклом многоугольнике число вершин=числу сторон
ответ: 10
теорема. прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.
рассмотрим следующий рисунок.
ah - перпендикулярен плоскости α. am это наклонная в плоскости α; a - прямая, проведенная в плоскости α через точку м перпендикулярно к проекции hm наклонной. теперь, докажем, что прямая а перпендикулярна ам. для этого рассмотрим плоскость amh.
по условию прямая а перпендикулярна нм. также прямая а перпендикулярна ан, так как ан перпендикулярна плоскости α. прямые нм и ан принадлежат плоскости анм и пересекаются. из этих трех пунктов следует, что прямая а перпендикулярна плоскости амн, значит, она перпендикулярна любой прямой, которая принадлежит плоскости амн.
так как прямая ам принадлежит плоскости амн, значит прямая a и прямая ам перпендикулярны между собой. что и требовалось доказать.
так как в теореме присутствуют три перпендикуляра, ан, нм и ам, теорема называется теоремой о трех перпендикулярах. все три прямых угла показаны на рисунке, который в начале доказательства. помимо основной теоремы о трех перпендикулярах, существует и обратная теорема о трех перпендикулярах.
обратная теорема
прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.
. отрезок ad перпендикулярен к плоскости равнобедренного треугольника авс. известно, что ав = ас = 5см, вс = 6 см, ad = 12 см. найти расстояние от точки а до прямой вс.
решение.
пусть точка е это середина вс. тогда вс будет перпендикулярным ае. то есть ае будет расстояние от точки а до прямой вс.
еа является проекцией de на плоскость авс. ае перпендикулярен вс, а следовательно по теореме о трех перпендикулярах de будет перпендикулярен bc. получаем, что de - это расстояние от точки d до отрезка bc. теперь будем определять ae.
ве = (1/2)*вс = 3 см.
так как треугольник аве прямоугольный, то можем по теореме пифагора найти ае.
ае^2 = ab^2-be^2 = 25-9 = 16, следовательно, ае = 4 см.
ответ. 4 см.