Точка равноудалена от сторон прямоугольного треугольника, => эта точка проектируется в центр вписанной в треугольник окружности. радиус вписанной в треугольник окружности: r=(a+b-c)/2 1. по теореме Пифагора: c²=a²+b². a=9 см, b=12 см c²=9²+12². c=15 см r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник: катет - расстояние от точки до плоскости треугольника, а=4 см катет - радиус вписанной в треугольник окружности, b=3 см гипотенуза - расстояние от точки до сторон треугольника, с. найти c²=3²+4² c=5 ответ: расстояние от точки до сторон прямоугольного треугольника 5 см
Треугольником называется фигура, которая состоит из трех точек, не лежащих на одной прямой, и трех отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — сторонами.На рисунке 21 вы видите треугольник с вершинами А, В, С и сторонами АВ, ВС, АС. Треугольник обозначается указанием его вершин. Вместо слова «треугольник» иногда употребляют знак Д. Например, треугольник на рисунке 21 обозначается так: ДАВС.Углом треугольника ABC при вершине А называется угол, образованный полупрямыми АВ и АС. Так же определяются углы треугольника при вершинах В и С.Два отрезка называются равными, если они имеют одинаковую длину. Два угла называются равными, если они имеют одинаковую угловую меру в градусах.Треугольники называются равными, если у них соответствующие стороны равны и соответствующие углы равны. При этом соответствующие углы должны лежать против соответствующих сторон.
радиус вписанной в треугольник окружности: r=(a+b-c)/2
1. по теореме Пифагора:
c²=a²+b². a=9 см, b=12 см
c²=9²+12². c=15 см
r=(9+12-15)/2. r=3 см
2. прямоугольный треугольник:
катет - расстояние от точки до плоскости треугольника, а=4 см
катет - радиус вписанной в треугольник окружности, b=3 см
гипотенуза - расстояние от точки до сторон треугольника, с. найти
c²=3²+4²
c=5
ответ: расстояние от точки до сторон прямоугольного треугольника 5 см