Навколо рівнобедреної трапеції описали коло. Діагональ трапеції перпендикулярна до бічної сторони. Основи трапеції дорівнюють 5см і 10 см.
1) Побудувати рисунок
2) Знайти радіус описаного кола
3) Знайти радіус вписаного кола
4) Знайти площу сектора, що стягує дуга, яка є бічною стороною трапеції
5) Знайти площу трапеції
Вокруг равнобедренной трапеции описали круг. Диагональ трапеции перпендикулярна к боковой стороне. Основы трапеции равны 5 см и 10 см.
1) Побудувати рисунок
2) Знайти радіус описаного кола
3) Знайти радіус вписаного кола
4) Знайти площу сектора, що стягує дуга, яка є бічною стороною трапеції
5) Знайти площу трапеції
Углы каждой пары равны между собой (каквертикальные):
∠1=∠4, ∠2=∠5, ∠3=∠6.
Внешний угол треугольника равен сумме двух внутренних углов, несмежных с ним.
Поэтому ∠1=∠А+∠С, ∠2=∠А+∠В, ∠3=∠В+∠С.
Отсюда сумма внешних углов треугольника, взятых по одному при каждой вершине, равна
∠1+∠2+∠3=∠А+∠С+∠А+∠В+∠В+∠С=2(∠А+∠В+∠С).
Так как сумма углов треугольника равна 180º, то ∠А+∠В+∠С=180º. Значит, ∠1+∠2+∠3=2∙180º=360º.
Когда задают вопрос: «Чему равна сумма внешних углов треугольника?», чаще всего имеют в виду именно сумму углов, взятых по одному при каждой вершине. Поэтому следует уточнить формулировку — нужно найти сумму углов, взятых по одному при каждой вершине или сумму всех внешних углов. Сумма всех шести внешних углов, соответственно, в два раза больше: ∠1+∠2+∠3+∠4+∠5+∠6=2(∠1+∠2+∠3)=720º.