Объяснение:
Так как треугольник АВС прямоугольный и угол В = 900, то кротчайшее расстояние от точки А до прямой ВС будет отрезок АВ = 4 см.
Точки С лежит на прямой АС, то расстояние от точки С до прямой АС равно нулю.
По теореме Пифагора определим длину гипотенузы АС. АС2 = ВС2 + АВ2 = 47 + 16 = 65.
АС = √65 см.
Площадь треугольника АВС будет равна:S = АВ * ВС / 2 = 7 * 4 / 2 = 14 см.
Так же пощада равна: S = АС * ВН / 2 = √65 * ВН / 2.
Тогда 14 = √65 * ВН / 2.
ВН = 28 / √65 см.
ответ: 4 см, 0 см, ВН не может быть 5 см.
1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
мне лень было делать на листочке:")
Объяснение:
Так как треугольник АВС прямоугольный и угол В = 900, то кротчайшее расстояние от точки А до прямой ВС будет отрезок АВ = 4 см.
Точки С лежит на прямой АС, то расстояние от точки С до прямой АС равно нулю.
По теореме Пифагора определим длину гипотенузы АС. АС2 = ВС2 + АВ2 = 47 + 16 = 65.
АС = √65 см.
Площадь треугольника АВС будет равна:S = АВ * ВС / 2 = 7 * 4 / 2 = 14 см.
Так же пощада равна: S = АС * ВН / 2 = √65 * ВН / 2.
Тогда 14 = √65 * ВН / 2.
ВН = 28 / √65 см.
ответ: 4 см, 0 см, ВН не может быть 5 см.
1. На прямой "а" откладываем отрезок АВ, равный отрезку PQ.
2. В точке А строим угол, равный данному, со стороной, лежащей на прямой "а".
3. В точке В строим угол, равный данному, со стороной, лежащей на прямой "а".
4. В точке пересечения сторон построенных углов получаем точку С.
Треугольник АВС построен.
Построение угла, равного данному:
Проводим окружность с центром в точке М - вершине данного угла.
Получим точки К и Н на сторонах данного нам угла.
Проводим окружность этого же радиуса (МН) с центром в точке А.
Получим точку К' на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К' проведем дугу радиуса КН и получим точку H'.
Через точки А и Н' проведем прямую - угол Н'АК' равен данному нам углу.
Проводим окружность радиуса МН с центром в точке В.
Получим точку К" на стороне АВ.
Раствором циркуля, равным расстоянию КН из точки К" проведем дугу радиуса КН и получим точку H".
Через точки B и Н" проведем прямую - угол Н"BК" равен данному нам углу.
Объяснение:
мне лень было делать на листочке:")