Если провести через точку A прямую параллельно BC, то она пересечет BD в точке K таким образом, что AK = AB. Это потому, что ∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а ∠DBC = ∠ABD; так как BD - биссектриса получилось, что треугольник AKB - равнобедренный. Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K. Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
∠AKB = ∠DBC; это - внутренние накрест лежащие углы; а
∠DBC = ∠ABD; так как BD - биссектриса
получилось, что треугольник AKB - равнобедренный.
Теперь понятно, что для того, чтобы прямая AD пересекла BС в точке C за точкой D, то есть чтобы существовал треугольник ABC, нужно, чтобы точка D лежала ближе к B, чем K.
Отсюда ∠ADB > ∠AKB = ∠ABD; и AB > AD; так как напротив большего угла в треугольнике лежит большая сторона.
ответ:Треугольник АВС
<АВС=180-(22+50)=180-72=108 градусов
Углы АВС и СВD-смежные,их сумма равна 180 градусов,тогда
<CBD=180-108=72 градуса
По условию задачи треугольник ВСD равнобедренный,т к
ВС=ВD
Значит,угол СВD-угол при вершине равнобедренного треугольника,а углы при основании равны между собой
<ВСD=<D=(180-72):2=108:2=54 градуса
Номер 2
Угол АLC и угол АLB-смежные углы,их сумма равна 180 градусов,тогда
<АLB=180-121=59 градусов
Треугольник ABLИзвестны два угла,узнаём третий
<ВАL=180-(59+101)=180-160=20 градусов
Т к АL биссектриса,то
<А=20•2=40 градусов
Тогда
<АСВ=180-(40+101)=180-141=39 градусов
Объяснение: