Найдите площадь треугольника, стороны которого равны 26 см, 28 см и 30 см. Найдите высоту, проведенную к
большей стороне.
Дескриптор: Обучающиеся
- применяет формулу Герона для вычисления
площаши треугольника;
- находит плошадь треугольника.
Верных ответов: 2
306 кв. см
366 кв. см
204 см
336 кв. см
24 см
24. 4 см
Площадь треугольника вычисляется по формуле
S = 1/2 * a * h
(где S - площадь, a - основание, h - высота треугольника, проведенная к основанию).
Перед решением задачи нужно сделать чертеж. Если основание равнобедренного треугольника совпадает со стороной квадрата, то вершина треугольника лежит на середине противоположной стороны.
Проведем высоту в треугольнике. Так как высота будет перпендикулярна основанию, то есть стороне квадрата, то высота будет равна высоте квадрата.
И так как у квадрата все стороны равны, то площадь треугольника будет равна:
S = 1/2 * a * h = 1/2 * a * a = 1/2 * 4 * 4 = 8 см².
ответ: 8 см².
ABCD - прямоугольник, Sabcd = 96 см²,
ABKM - квадрат, Sabkm = 36 см².
Sabkm = AB² = 36
AB = 6 см
Sabcd = AB · AD, ⇒
AD = Sabcd / AB = 96 / 6 = 16 см
Плоскости квадрата и прямоугольника пересекаются по прямой АВ, АВ - ребро двугранного угла.
МА⊥АВ как стороны квадрата,
DA⊥АВ как стороны прямоугольника, ⇒
∠MAD - линейный угол двугранного угла - искомый.
Соединим вершины М и D.
Так как прямая АВ перпендикулярна двум пересекающимся прямым плоскости MAD, то она перпендикулярна и самой плоскости, а значит и каждой прямой, лежащей в этой плоскости, т.е.
АВ⊥MD.
КМ║АВ и CD║AB, ⇒ KM⊥MD, CD⊥MD, т.е.
MD и есть расстояние между параллельными сторонами квадрата и прямоугольника.
MD = 14 см.
Из треугольника AMD по теореме косинусов:
MD² = AM² + AD² - 2·AM·AD·cosMAD
196 = 36 + 256 - 2 · 6 · 16 · cosMAD
cosMAD = (292 - 196) / 192 = 96/192 = 0,5
∠MAD = 60°