В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
neondragooffi
neondragooffi
07.02.2020 01:58 •  Геометрия

Найдите стороны треугольника АВС если периметр равен 48 , ВА меньше ВС на 4, а АС больше ВС на

Показать ответ
Ответ:
neumnaya4044
neumnaya4044
27.06.2022 02:30
По уравнениям боковых сторон 3x+y=0 и -x+3y=0 видно, что они проходят  через начало координат - это одна из вершин треугольника: О(0;0).
Основание равнобедренного треугольника перпендикулярно его высоте (она же и биссектриса угла при вершине).
Находим уравнения биссектрис угла при вершине О:
\frac{A_1x+B_1y+C_1}{ \sqrt{A_1^2+B_1^2} } =+- \frac{A_2x+B_2y+C_2}{ \sqrt{A_2^2+B_2^2} }
1) (3х+у)/√10 = (-х+3у)/√10
    3х+у = -х+3у
    4х = 2у
     у = 2х  не подходит (проходит выше сторон треугольника).

2) (3х+у)/√10 = -(-х+3у)/√10
    3х+у = -(-х+3у)
    2х = -4у
     у = (-1/2)х.
    Уравнение перпендикулярной прямой у = 1/(-к)+в
    В нашем случае уравнение основания (назовём его АВ) будет таким:
    у = 1(1/2)х+в = 2х+в.
    Подставим координаты известной точки на основании (5;0):
    0 = 2*5+в  отсюда в = -10.
    Уравнение АВ: у = 2х-10  или 2х-у-10 = 0.
    Координаты вершин А и В находим как как точки пересечения боковых сторон с основанием.
\left \{ {3x+y=0} \atop {2x-y-10=0}} \right.
Сложив уравнения, получаем 5х-10 = 0, отсюда х = 10/5 = 2.
у = -3х = -3*2 = -6. Это точка А(2; -6).
\left \{ {{-x+3y=0} \atop {2x-y-10=0}} \right.
Умножим первое уравнение на 2 и сложим:
5у = 10,  у = 10/5 = 2,  х = 3у = 3*2 = 6.
Это точка В(6; 2).

ответ: вершины треугольника  О(0;0), А(2;-6), В(6;2).
0,0(0 оценок)
Ответ:
lizyakehehe
lizyakehehe
05.09.2022 12:12
Пусть P - точка пересечения AM  и CD; и пусть BP пересекает AC в точке Q;
тогда из теоремы Чевы сразу следует
AQ/QC = AD/DB = 3;
из теоремы Ван-Обеля (следствие теоремы Чевы)
AP/PM = AD/DB + AQ/QC = 6;
Получилось, что в треугольнике CAM 1) угол С = 60°; 2) высота CP делит сторону AM на отрезки в отношении 6:1; 3) AC = 3; этого достаточно, чтобы решить задачу.
Если для краткости записи обозначить CP = h; MP = z; MC = y; AC = a = 3; то легко записать очевидные соотношения
y^2 = z^2 + h^2;
a^2 = (6*z)^2 + h^2;
(7*z)^2 = y^2 + a^2 - a*y; (это просто теорема косинусов, косинус 60° равен 1/2; напоминаю, что a = 3)
вычитая из второго уравнения первое, легко найти
a^2 - y^2 = 35*z^2;
остается исключить z, подставить a = 3; и получится квадратное уравнение для y; напомню, что ВС = 2*y;
(y^2 + a^2 - a*y)/49 = (a^2 - y^2)/35;
5*y^2 + 5*a^2 - 5*a*y = 7*a^2 - 7*y^2;
12*y^2 - 2*a^2 - 5*a*y = 0;
12y^2 - 15*y - 18 = 0; или BC^2 - (5/2)*BC - 6 = 0;
BC = 5/4 + √((5/4)^2 + 6) = (5 + √(25 + 16*6))/4 = (5 + 11)/4 = 4; (второй корень отпадает)
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота