1. Т.к. прямые РМ и BD лежат в одной плоскости (ABD), их надо просто продлить до пересечения. N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒ PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС. KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD) Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС. Т.е. PL║AC. По теореме Фалеса CL:LD = AP:PD = 3:1
Из большого угла проводим высоту к основанию, получаем прямоугольник и прямойгольный треугольник, находим углы в треуголнике.. основания в трапеции параллельны, поэтому проведенная высота дает прямой угол и к нижнему и к верхнему основания, тогда смотрим на больший угол равный 135, вычитаем из него прямой, получаем 45град, отсюда понимаем, что полученный треуольник прямоугольный равнобедренный, у нас известна гипотенуза, а квадрат гипотенузы, равен сумме квадратов катетов - находим катеты:
(находим квадрат гипотенузы, делим его на 2, и извлекаем корень квадратный, получаем катет)
Катет является и высотой, значит высота равна 5см, а длина прямоугольника равна 12-5=7см
N = PM∩BD
2. РМ⊂ (ABD), CD∩(ABD) = D, D∉PM ⇒
PM и CD скрещивающиеся по признаку и, значит, не пересекаются.
3. Пусть К - середина ВС. Тогда МК║АС, как средняя линия ΔАВС.
KN∩CD = L, PMKL - искомое сечение. Оно параллельно АС, т.к. МК║АС.
МК║АС, АС⊂ACD, ⇒MK║(ACD)
Секущая плоскость проходит через прямую, параллельную ADC и пересекает ADC по прямой PL, значит линия пересечения параллельна АС.
Т.е. PL║AC.
По теореме Фалеса CL:LD = AP:PD = 3:1
Из большого угла проводим высоту к основанию, получаем прямоугольник и прямойгольный треугольник, находим углы в треуголнике.. основания в трапеции параллельны, поэтому проведенная высота дает прямой угол и к нижнему и к верхнему основания, тогда смотрим на больший угол равный 135, вычитаем из него прямой, получаем 45град, отсюда понимаем, что полученный треуольник прямоугольный равнобедренный, у нас известна гипотенуза, а квадрат гипотенузы, равен сумме квадратов катетов - находим катеты:
(находим квадрат гипотенузы, делим его на 2, и извлекаем корень квадратный, получаем катет)
Катет является и высотой, значит высота равна 5см, а длина прямоугольника равна 12-5=7см
Находим площадь трапеции:
-площадь прямоугольника=7*5=35
-площадь треульника=(5*5)/2=12.5
площадь трапеции=35+12.5=47,5см