2. прямоугольник АВСД площадью 12, ВН высота на АС=2,4, треугольник АВС=треугольник АСД как прямоугольные по двум катетам, площадь АВС=площадьАСД=1/2площадьАВСД=12/2=6, треугольник АВС, АС=2*площадьАВС/ВН=2*6/2,4=5, АН=х, НС=5-х, АН*НС=ВН в квадрате, х*(5-х)=5,76, х в квадрате-5х+5,76=0, х=(5+-корень(25-23,04))/2, х1=1,8=АН, х2=3,2=НС, АВ в квадрате=АН*АС, АВ в квадрате=1,8*5, АВ=3=СД, ВС в квадрате=НС*АС=3,2*5=16, ВС=4=АД
треугольник АВС, О-пересечение медиан, в точке пересечения медианы делятся в отношении 2/1 начиная от вершины, ВМ-медиана на АС, ВО/ОМ=2/1=2х/1х, ВО=2х, ОМ=х, ВМ=ВО+ОМ=2х+х=3х, КЕ параллельна АС, треугольник КВЕ подобен треугольнику АВС по двум равным углам (уголВ-общий, уголВКЕ=уголА как соответственные), КЕ=12, в подобных треугольниках линейные размеры пропорцианальны, ВО/ВМ=КЕ/АС, 2х/3х=12/АС, АС=12*3/2=18
площади в подобных треугольниках относятся как квадраты линейных размеров, площадьКВЕ/площадьАВС=КЕ в квадрате/АС в квадрате, площадьКВЕ/72=144/324, площадь КВЕ=72*144/324=32
треугольник АВС равносторонний, АВ=ВС=АС=а, радиус описанной окружности=а*корень3/3, О-центр окружности, ДКТ-конус, ДТ-диаметр, уголДКТ=2А (альфа), треугольник ДКТ равнобедренный, КО-высота конуса=медиане=биссектрисе, уголДКО=уголТКО=1/2уголДКТ=2А/2=А, треугольник ДКО прямоугольный, ДК-образующая=ОД (радиус)/sinA =(а*корень3/3)/sinA=(а*корень3) / (3*sinA), площадь боковая=пи*радиус*образующая=пи*(а*корень3/3)*((а*корень3)/(3*sinA))=(пи*а в квадрате)/(3* sinA)
в цифрах площадь боковая=пи*36/(3*1/2)=24пи
2. прямоугольник АВСД площадью 12, ВН высота на АС=2,4, треугольник АВС=треугольник АСД как прямоугольные по двум катетам, площадь АВС=площадьАСД=1/2площадьАВСД=12/2=6, треугольник АВС, АС=2*площадьАВС/ВН=2*6/2,4=5, АН=х, НС=5-х, АН*НС=ВН в квадрате, х*(5-х)=5,76, х в квадрате-5х+5,76=0, х=(5+-корень(25-23,04))/2, х1=1,8=АН, х2=3,2=НС, АВ в квадрате=АН*АС, АВ в квадрате=1,8*5, АВ=3=СД, ВС в квадрате=НС*АС=3,2*5=16, ВС=4=АД
треугольник АВС, О-пересечение медиан, в точке пересечения медианы делятся в отношении 2/1 начиная от вершины, ВМ-медиана на АС, ВО/ОМ=2/1=2х/1х, ВО=2х, ОМ=х, ВМ=ВО+ОМ=2х+х=3х, КЕ параллельна АС, треугольник КВЕ подобен треугольнику АВС по двум равным углам (уголВ-общий, уголВКЕ=уголА как соответственные), КЕ=12, в подобных треугольниках линейные размеры пропорцианальны, ВО/ВМ=КЕ/АС, 2х/3х=12/АС, АС=12*3/2=18
площади в подобных треугольниках относятся как квадраты линейных размеров, площадьКВЕ/площадьАВС=КЕ в квадрате/АС в квадрате, площадьКВЕ/72=144/324, площадь КВЕ=72*144/324=32