Задача 1. Против угла 30° (ЕВС) лежит половина гипотенузы, значит гепотенуза прямоугольного треугольника ЕВС, равна ЕВ=7*2=14. ответ ЕВ) 14.
2 Задача. Угл КРЕ=30° (180-150) , против угла в 30° лежит половина гипотенузы => РЕ=9*2=18. Угл СКЕ=30° (сумма углов 180°-90-60) , против угла в 30 градусов лежит половина гепотенузы=> СЕ 4.5 (9/2). Мы нашли РЕ=18 и СЕ=4.5, можем найти РС= РЕ-СЕ= 18-4.5=13.5.
ответ: РС=13.5. СЕ=4.5
Объяснение:
По основному свойству прямоугольного треугольника: против угла в 30° лежит половина гипотенузы.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
Задача 1. Против угла 30° (ЕВС) лежит половина гипотенузы, значит гепотенуза прямоугольного треугольника ЕВС, равна ЕВ=7*2=14. ответ ЕВ) 14.
2 Задача. Угл КРЕ=30° (180-150) , против угла в 30° лежит половина гипотенузы => РЕ=9*2=18. Угл СКЕ=30° (сумма углов 180°-90-60) , против угла в 30 градусов лежит половина гепотенузы=> СЕ 4.5 (9/2). Мы нашли РЕ=18 и СЕ=4.5, можем найти РС= РЕ-СЕ= 18-4.5=13.5.
ответ: РС=13.5. СЕ=4.5
Объяснение:
По основному свойству прямоугольного треугольника: против угла в 30° лежит половина гипотенузы.
Объяснение:Основанием прямой призмы является равнобедренный прямоугольный треугольник. Большая боковая грань-квадрат со стороной 6 корней из 2 см.
а) найдите площадь полной поверхности этой призмы;
б) постройте сечение призмы плоскостью, проходящей через катет нижнего основания и середину противолежащего бокового ребра;
в) вычислите площадь этого сечения;
г) найдите угол между плоскостью сечения и плоскостью нижнего основания;
д) постройте линию пересечения секущей плоскости верхнего основания.
рисунок к задаче 190а) Призма прямая, т.е. её боковые ребра перпендикулярны основаниям. Боковые грани являются прямоугольниками. Площадь прямоугольника равна произведению длин смежных сторон, следовательно, площадь той грани больше, ребра которой больше. Боковые ребра параллелепипеда равны, а в основании самуую большую длину имеет гипотенуза, поэтому большая грань - ABB1A1.
И раз эта грань - квадрат, то все её стороны по 6 корней из 2, в том числе и гипотенуза основания. Пусть АС=ВС=х, из теоремы Пифагора найдем катеты основания и его площадь:
площадь основания
Теперь найдем площади боковых граней, а затем и площадь полной поверхности
нашли полную поверхность