bc=b1c1, и am, a1m1 - медианы, то bm=cm=b1m1=c1m1. Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам: - ab=a1b1 по условию; - am=a1m1 по условию; - bm=b1m1 как только что доказано. У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой. Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними: - am=a1m1 по условию; - сm=c1m1 как было показано выше; - углы amc и a1m1c1 равны как доказано выше. У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1. Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
Треугольная пирамида, все боковые ребра равны, => высота пирамиды проектируется в центр описанной около треугольника (основания пирамиды) окружности. радиус описанной около произвольного треугольника окружности вычисляется по формуле:
bm=cm=b1m1=c1m1.
Рассмотрим треугольники abm и a1b1m1. Они равны по трем сторонам:
- ab=a1b1 по условию;
- am=a1m1 по условию;
- bm=b1m1 как только что доказано.
У равных треугольников abm и a1b1m1 равны соответственные углы amb и a1m1b1. Значит, углы amc и a1m1c1, равные 180-<amb и 180-<a1m1b1, также равны между собой.
Треугольники amc и a1m1c1 будут равны по двум сторонам и углу между ними:
- am=a1m1 по условию;
- сm=c1m1 как было показано выше;
- углы amc и a1m1c1 равны как доказано выше.
У равных треугольников amc и a1m1c1 равны соответственные стороны ac и a1c1.
Таким образом, треугольники abc и a1b1c1 получаются равными по трем сторонам.
радиус описанной около произвольного треугольника окружности вычисляется по формуле:
AC=1, BC=2, <C=60°. AB=?
по теореме косинусов:
AB²=AC²+BC²-2*AC*Bc*cos<C
AB²=1²+2²-2*1*2*cos60°
AB²=3, AB=√3
прямоугольный треугольник:
гипотенуза с=√13 - боковое ребро пирамиды
катет а=√3 радиус описанной около треугольника окружности
катет Н -высота пирамиды, найти по теореме Пифагора:
c²=a²+H², H²=(√13)²-(√3)². H=√10