АВСА1В1С1 - усечённая пирамида. Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1. Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2 АМ=8√3·√3/2=12. А1М1=4√3·√3/2=6. АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒ h=2S/(АМ+А1М1)=2·54/(12+6)=6. Площадь правильного тр-ка: S=a²√3/4. S1=(8√3)²·√3/4=48√3. S2=(4√3)²·√3/4=12√3. Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3 V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.
1. Прежде заметим, что AB = CD = 3√2; AD = BC = 5; (рисунок) ∠A = ∠C = 45°; ∠B = ∠D = 180° - 45° = 135° (Свойства параллелограмма)
а) AD · AB = BC · AB = |BC| · |AB| · cos ∠A = 5 · 3√2 · cos 45° = 15√2 · √2 / 2 = 15
б) BA · BC = |BA| · |BC| · cos ∠B = 3√2 · 5 · cos 135° = -15√2 · √2/2 = -15
в) AD · BH = 0, так как AD ⊥ BH
2. a {-4; 5}, b {-5; 4} - вектора
a · b = a₁b₁ + a₂b₂ = -4·(-5) + 5·4 = 20 + 20 = 40
3. a {-12; 5}, b {3; 4} - вектора
cos ∠(a, b) = a · b / (|a| · |b|)
a · b = -12·3 + 5·4 = -36 + 20 = -16
|a|² = (-12)² + 5² = 144 + 25 = 169 ⇒ |a| = √169 = 13
|b|² = 3² + 4² = 9 + 16 = 25 ⇒ |b| = √25 = 5
cos ∠(a, b) = -16 / (13·5) = -16/65
4. m {3; y}, n {2; -6} - ненулевые вектора
m ⊥ n ⇔ m·n = 0 (m,n ≠ 0)
Вроде так
m·n = 3·2 + y·(-6) = 6 - 6y = 0
-6y = -6
y = 1
5. Для того, чтобы "выйти" на cos ∠B нам понадобятся вектора BA и BC. Найдем их координаты:
BA {3 - 0; 9 - 6} = {3; 3}
BC {4 - 0; 2 - 6} = {4; -4}
BA · BC = 3 · 4 + 3 · (-4) = 12 - 12 = 0.
Так как BA, BC ≠ 0 ⇒ BA ⊥ BC ⇒ cos ∠B = 0
Объяснение:
Предложенное сечение - трапеция с основаниями, равными высотам, проведённым в основаниях пирамиды. АМ - высота в тр-ке АВС, ВМ=МС. А1М1 - высота в тр-ке А1В1С1 В1М1=С1М1.
Высота в прямоугольном тр-ке вычисляется по ф-ле h=а√3/2
АМ=8√3·√3/2=12.
А1М1=4√3·√3/2=6.
АММ1А1 - трапеция. Её площадь: S=(a+b)h/2=(АМ+А1М1)h/2 ⇒
h=2S/(АМ+А1М1)=2·54/(12+6)=6.
Площадь правильного тр-ка: S=a²√3/4.
S1=(8√3)²·√3/4=48√3.
S2=(4√3)²·√3/4=12√3.
Объём усечённой пирамиды: V=h(S1+√(S1·S2)+S2)/3
V=6(48√3+√(48√3·12√3)+12√3)/3=2(48√3+24√3+12√3)=168√3.