ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
<ABD=180°-85°-30°=65°. <B=<ABD+<CBD=65°+65°=130° Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25° Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°. ответ: <A=85°, <B=130°, <C=85° и <D=60°
ускорение свободного падения на любой планете равно:
g = gm/r², где m - масса планеты, r - радиус планеты, а g - гравитационная постоянная. пусть m - масса неизвестной планеты, а r - её радиус. тогда ускорение свободного падения на планете будет равно:
g₁ = gm/r², а на земле оно будет равно:
g₀ = gm/r²
подставим в выражение для земли все данные по условию :
g₀ = g * 40m / (1.5r)²
теперь разделим земное ускорение на ускорение на планете:
g₀ / g₁ = g * 40m / (1.5r)² / gm/r². получили пропорцию:
g₀ / g₁ = 40 / 2.25
отсюда g₁ = 2.25g₀ / 40 = 22.5 / 40 = 0.6 м/с²
<B=<ABD+<CBD=65°+65°=130°
Треугольник АВС равнобедренный (АВ=ВС - дано), значит <BCA=<BAC=(180°-130°):2=25°
Итак, BО (О - точка пересечения диагоналей) в треугольнике АВС биссектриса, высота и медиана. Следовательно, диагональ BD перпендикулярна диагонали АС. Но если в треугольнике ADC DO - высота и медиана (АО=ОС - доказано выше), то он равнобедренный и <ACD=<CAD=60°, а <C=25°+60°=85°. Тогда <CDO=30° и <D=30°+30°=60°.
ответ: <A=85°, <B=130°, <C=85° и <D=60°