Сторона трапеции, перпендикулярная основаниям и играющая роль высоты равна двум радиусам т.е.12. Пусть малое основпние равно х. Тогда сумма оснований 24+х. Эта же величина равна сумме боковых сторон, т.к. трапеция описана. Поэтому большая боковая сторона равна 24+х-12=12+х.
Теперь из вершины тупого угла С опустим СМ высоту на большое основанип АД, СД большая боковая сторона, МД=24-х.. Из прямоугольного треугольника СДМ имеем уравнение
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.
В английской и американской литературе тангенс, котангенс и косеканс обозначаются {\displaystyle \tan x} {\displaystyle \tan x}, {\displaystyle \cot x} {\displaystyle \cot x}, {\displaystyle \csc x} \csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[1], но потом эти страны перешли на англо-американский стандарт.
Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т. д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.
Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и бесконечно дифференцируемые в области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках {\displaystyle \pm \pi n+{\frac {\pi }{2}}} \pm \pi n + \frac{\pi}{2}, а котангенс и косеканс — в точках {\displaystyle \pm \pi n} \pm \pi n.
Сторона трапеции, перпендикулярная основаниям и играющая роль высоты равна двум радиусам т.е.12. Пусть малое основпние равно х. Тогда сумма оснований 24+х. Эта же величина равна сумме боковых сторон, т.к. трапеция описана. Поэтому большая боковая сторона равна 24+х-12=12+х.
Теперь из вершины тупого угла С опустим СМ высоту на большое основанип АД, СД большая боковая сторона, МД=24-х.. Из прямоугольного треугольника СДМ имеем уравнение
144+(24-х)^2=(12+х)^2
144+576-48х+х^2=144+24х+х^2
72х=576
х=8 длина верхнего основания.
Площадь равна
(24+8):2*12=32*6=192.
Тригонометри́ческие фу́нкции — элементарные функции, которые исторически возникли при рассмотрении прямоугольных треугольников и выражали зависимости длин сторон этих треугольников от острых углов при гипотенузе (или, что равнозначно, зависимость хорд и высот от центрального угла (дуги) в круге). Эти функции нашли широчайшее применение в самых разных областях науки. Впоследствии определение тригонометрических функций было расширено, их аргументом теперь может быть произвольное вещественное или даже комплексное число. Наука, изучающая свойства тригонометрических функций, называется тригонометрией.
К тригонометрическим функциям относятся:
прямые тригонометрические функции:
синус ( {\displaystyle \sin x} \sin x);
косинус ( {\displaystyle \cos x} \cos x);
производные тригонометрические функции:
тангенс ( {\displaystyle \mathrm {tg} \,x} \mathrm{tg}\, x);
котангенс ( {\displaystyle \mathrm {ctg} \,x} \mathrm{ctg}\, x);
другие тригонометрические функции:
секанс ( {\displaystyle \sec x} \sec x);
косеканс ( {\displaystyle \mathrm {cosec} \,x} \mathrm{cosec}\, x).
В английской и американской литературе тангенс, котангенс и косеканс обозначаются {\displaystyle \tan x} {\displaystyle \tan x}, {\displaystyle \cot x} {\displaystyle \cot x}, {\displaystyle \csc x} \csc x. До Второй мировой войны в Германии и во Франции эти функции обозначались так же, как принято в русскоязычных текстах[1], но потом эти страны перешли на англо-американский стандарт.
Кроме этих шести, существуют также некоторые редко используемые тригонометрические функции (версинус и т. д.), а также обратные тригонометрические функции (арксинус, арккосинус и т. д.), рассматриваемые в отдельных статьях.
Синус и косинус вещественного аргумента представляют собой периодические, непрерывные и бесконечно дифференцируемые вещественнозначные функции. Остальные четыре функции на вещественной оси также вещественнозначные, периодические и бесконечно дифференцируемые в области определения, но не непрерывные. Тангенс и секанс имеют разрывы второго рода в точках {\displaystyle \pm \pi n+{\frac {\pi }{2}}} \pm \pi n + \frac{\pi}{2}, а котангенс и косеканс — в точках {\displaystyle \pm \pi n} \pm \pi n.
Графики тригонометрических функци