обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см
Пусть х мм - большая сторона,
тогда остальные стороны: (х - 3); (х - 4); (х - 5) мм.
х + (х - 3) + (х - 4) + (х - 5) = 80
х + х - 3 + х - 4 + х - 5 = 80
4х - 12 = 80
4х = 80 + 12
4х = 92
х = 92 : 4
х = 23 (мм) - первая сторона.
23 - 3 = 20 (мм) - вторая сторона.
23 - 4 = 19 (мм) - третья сторона.
23 - 5 = 18 (мм) - четвертая сторона.
ответ: 23 мм; 20 мм; 19 мм; 18 мм.
2) Сумма углов четырехугольника равна 360°.
∠A = ∠B = ∠C = (360° - 135°) : 3 = 225° : 3 = 75°.
3) Сумма углов четырехугольника равна 360°.
1 + 2 + 4 + 5 = 12 - частей.
360° : 12 = 30° - 1 часть, соответственно, один из углов.
30° · 2 = 60° - второй угол.
30° · 4 = 120° - третий угол.
30° · 5 = 150° - четвертый угол.
ответ: 30°; 60°; 120°; 150°.