Условие перпендикулярности двух плоскостей: "Плоскости α и β перпендикулярны, если одна плоскость проходит через перпендикуляр к другой плоскости".
По теореме о трех перпендикулярах наклонная SC⊥BC, так как проекция DC наклонной SC перпендикулярна ВС (DC и ВС - пересекающиеся стороны прямоугольника) =>
Прямая ВС перпендикулярна плоскости CSD, так как она перпендикулярна двум пересекающимся прямым (DC и SС), лежащим в этой плоскости.
Плоскость BSC проходит через ВС, перпендикулярную плоскости CSD, следовательно, плоскости BSC и CSD перпендикулярны, то есть угол между ними равен 90°.
Угол между плоскостями BSC и CSD равен 90°.
Объяснение:
Условие перпендикулярности двух плоскостей: "Плоскости α и β перпендикулярны, если одна плоскость проходит через перпендикуляр к другой плоскости".
По теореме о трех перпендикулярах наклонная SC⊥BC, так как проекция DC наклонной SC перпендикулярна ВС (DC и ВС - пересекающиеся стороны прямоугольника) =>
Прямая ВС перпендикулярна плоскости CSD, так как она перпендикулярна двум пересекающимся прямым (DC и SС), лежащим в этой плоскости.
Плоскость BSC проходит через ВС, перпендикулярную плоскости CSD, следовательно, плоскости BSC и CSD перпендикулярны, то есть угол между ними равен 90°.
Делаем рисунок к задаче. Не стала рисовать меньшую окружность, чтобы не загромождать рисуно. Ее центр о, радиусы оА и оВ
Так как хорда видна из центра большей окружности под углом 60°,
треугольник АВО - равносторонний.
Хорда АВ равна радиусу ОА.
Проведем высоту ОМ.
Примем сторону АВ=а
ОМ=(а√3):2 по формуле высоты правильного треугольника
Рассмотрим прямоугольный треугольник АоВ
АоВ - равнобедренный, и поэтому оМ в нём равна половине АВ и равна а:2
Запишем выражением разность между ОМ и оМ
(а√3):2 - а:2=(а√3 - а):2=а(√3-1):2
Но это расстояние по условию задачи равно 9(√3-1)
а(√3-1):2=9(√3-1)
Сократим обе части уравнения на (√3-1)
а:2=9
а=9*2=18
Хорда =18
Объяснение: