Очень нужна с Геометрией! Даны точки A(-1;0), В (0;3), С (6;1), M(2;2), N(6,5), K(5;-2).
1. Запишите уравнение окружности с центром в точке А и радиусом АС.
2. Как расположена по отношению к этой окружности точка N.
3. Запишите уравнение прямой ВС.
4. Докажите, что треугольник MNK - равнобедренный.
Заранее
Сначала проверяем, подобны ли данные треугольники, если они подобны, то соотношение соответственных сторон должно быть правильным, значит:
АС/А₁С₁=ВС/В₁С₁
4/6=12/18
4*18=6*12
72=72 значит треугольники подобны
Тогда составляем пропорцию с неизвестной стороной А₁В₁:
АВ/АС=А₁В₁/А₁С₁
10/4=А₁В₁/12
А₁В₁=10*12/4=30
Задача 2
Мы знаем что, площади подобных треугольников относятся как квадраты сходственных сторон., Значит:
18/288=9²/А₁В₁
А₁В₁=288*81/18==36
Задача 3
Рассмотрим треугольники АОВ и ДОС, они подобны по первому признаку (когда два угла одного треугольника соответственно равны двум углам другого треугольника), так как ∠АОВ=∠ДОС как вертикальные, а ∠АВД=∠ВДС как внутренние накрест лежащие (так как АВ параллельно ДС, ведь АВСД трапеция и АВ и СД ее основания)
Тогда составляем пропорцию отношения сторон подобных треугольников:
ДО/ДС=ОВ/АВ
20/50=8/АВ
АВ=50*8/20=20
ответ АВ=20
а)Так как АВ = ВС , то треугольник АВС - равнобедренный, ВТ - высота, значит медиана и биссектриса. (хотя в дано почему то не прописано, про ВТ) Треугольник АВТ - прямоугольный. Против угла 30 градусов лежит катет в 2 раза меньше гипотенузы, значит АВ=ВС = 4*2=8 см.
Сумма двух сторон треугольника больше третьей стороны (неравенство треугольника), значит в из треугольника АВС АС < АВ + ВС AC < 16см
из треугольника АВТ АВ <АТ + ВТ или АТ>АВ - ВТ АТ > 4 см => АС > 8 см
8см < АС < 16 см
б)Если провести отрезок из точки Т к середине АВ (например точке М) то он разделит АВ на отрезки равные по 4 см. То есть треугольник МВТ - равнобедренный и углы М и Т равны. Найдем их М =Т = (180-В):2=(180-60);2=60 - Значит треугольник МВТ - равносторонний, значит ТМ = 4 см, Аналогично можно доказать что отрезок ТК (К - середина ВС) тоже 4 см. Значит их сумма равна 8 см.
Объяснение: