Эта фигура получится - трапеция)) т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции, отрезок касательной будет высотой трапеции (EF). радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны, площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° ) высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника) отрезки касательных к окружности, проведенных из одной точки, равны))
Обозначим вершины равнобедренного треугольника A,B, и C с основанием AC. По условию основание на 3 см меньше боковой стороны, значит боковая сторона на 3 см больше основания. Обозначим основание за x. Тогда боковая сторона будет равна (x+3)см. Составим и решим уравнение:x+(x+3)+(x+3)=18;x+x+3+x+3=18;3x+6=18;3x=12;x=12:3;x=4. Мы нашли основание AC, оно равно 4 см. Периметр равнобедренного треугольника равен:боковая сторона+боковая сторона+основание. Значит, сумма длин боковых сторон равна:18-основание AC=18-4=14.
т.к. радиусы перпендикулярны ВМ (касательной) и, следовательно, они параллельны-они будут основаниями трапеции,
отрезок касательной будет высотой трапеции (EF).
радиусы окружностей можно найти через площадь треугольников, в которые окружности вписаны,
площадь этих треугольников вычисляется или по формуле Герона (т.к. все стороны в них известны) или как половина произведения двух сторон на синус угла между ними (углы известны из равностороннего треугольника 60° )
высота трапеции находится из прямоугольных треугольников (с катетами-радиусами), гипотенузы которых будут биссектрисами углов (АО1; СО2; т.к. центр вписанной окружности=точка пересечения биссектрис углов треугольника)
отрезки касательных к окружности, проведенных из одной точки, равны))