ОЧЕНЬ В прямоугольнике ABCD диагонали пересекаются в точке О. Докажите, что четырехугольник KMNP, вершинами которого являются середины отрезков OA, OB, OC и OD – прямоугольник
Эти два равнобедренных треугольника подобны, т.к. имеют равный угол, противолежащий их основаниям, и тем самым это обеспечивает равенство их углов при основании.Коэффициент их подобия равен коэффициенту отношения их периметров, т.е. он равен 15:10=1,5 Найдём стороны второго треугольника, у которого периметр равен 10. У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника: 1,5=6:x x=6:1,5=4 см. Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см. А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3. ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
Найдём стороны второго треугольника, у которого периметр равен 10.
У первого треугольника, у которого периметр равен 15-ти см, боковая сторона равна 6-ти см. Отсюда находим боковую сторону второго треугольника:
1,5=6:x
x=6:1,5=4 см.
Отсюда его основание равно: 10-2*4(боковые стороны у равнобедренного треугольника равна друг другу)=2 см.
А коэффициент подобия треугольников из предоставленных вариантов написан в варианте номер 3.
ответ: Боковые стороны второго треугольника равны 4-ём см, а основания 2-ум см. Коэффициент подобия треугольников равен 1,5=3:2(вариант №3).
Нормальный вектор заданной плоскости и будет направляющим вектором для заданной прямой.
Находим нормальный вектор как результат векторного произведения АВ х АС.
АВ: (-1; 1; 3), АС: (2; 2; -1).
i j k | i j
-1 1 3 | -1 1
2 2 -1 | 2 2 = -1i + 6j -2k -1j - 6i - 2k =
= -7i + 5j - 4k = (-7; 5; -4).
Теперь подставляем координаты точки М и получаем уравнение.
(x - 1)/(-7) = (y - 2)/5 = (z - 3)/(-4).