очень В прямой призме ABCА1В1С1 угол АВС - прямой, угол САВ равен 60°,
AВ = 2 см, AА1 = см.
1) Найдите площадь полной поверхности прямой призмы.
2) Найдите площадь сечения призмы плоскостью A1BC.
3) Найдите угол между плоскостями A1BС и АВC.
4) Докажите, что плоскость A1BС перпендикулярна плоскости AА1В1.
Треугольник АВД-равнобедренный,т.к угол ABD=DAB (у равнобедренного треугольника углы при основании равны).
3. Угол DBC=180-(60+60)=60. Значит треугольник BDC- равносторонний( у равносторон. треугольника все углы равны 60). Следовательно CD=BC=BD=AD=5.
4.AC=AD+DC
AC=5+5=10
5. DH-расстояние от точки D до AB,Значит угол DHC равен 90 (расстояние от точки до прямой- перпендикуляр от точки до прямой).
6. В треугольнике DHC, DH-катет лежащий против угла в 30 градусов. Значит он равен половине гипотенузы. DH= 0.5*AD
DH=0.5*5=2.5
ответ:10; 2,5
Объяснение:
Из условия нам известно, что ∠DOC равен пяти углам COB.
Если посмотреть на чертеж, то мы увидим, что ∠DOC и ∠COB смежные, а следовательно, их сумма равна 180°. Для нахождения углов DOC и COB составим линейное уравнение:
Пусть x - ∠DOC, тогда ∠COB - 5x. (угол COB равен 5x, т.к. он в 5 раз больше угла DOC)
Получаем:
x + 5x = 180°
6x = 180°
x = 30° (Это мы нашли x, то есть ∠DOC)
∠COB = 30° * 5 = 150°.
Ну а дальше - дело техники.
∠COD = ∠BOA = 150°(все вертикальные углы равны)
∠BOC = ∠AOD = 30°(все вертикальные углы равны).
Задача решена.