Один из углов образованных при пересечении двух параллельных прямых секущей равен 55 градусов Найдите все остальные образовавшийся углы с полным решение начиная Дано:
если диагональ ромба 6√3, то ее половина 3√3, диагонали ромба пересекаются под прямым углом и делит его на 4 равных треугольника, найдем синус половины большего угла в таком треугольнике, он равен отношению противолежащего катета к гипотенузе. т.е. 3√3/6=√3/2,
этому синусу соответствует угол, равный 60°, но это половина большего угла ромба, значит, весь угол равен 120°, а прилежащие к одной стороне ромба углы в сумме составляют 180°, поэтому второй угол равен 180°-120°=60°. так как противоположные углы в ромбе равны, то два угла по 120°, и два угла по 60°
ответ:
если диагональ ромба 6√3, то ее половина 3√3, диагонали ромба пересекаются под прямым углом и делит его на 4 равных треугольника, найдем синус половины большего угла в таком треугольнике, он равен отношению противолежащего катета к гипотенузе. т.е. 3√3/6=√3/2,
этому синусу соответствует угол, равный 60°, но это половина большего угла ромба, значит, весь угол равен 120°, а прилежащие к одной стороне ромба углы в сумме составляют 180°, поэтому второй угол равен 180°-120°=60°. так как противоположные углы в ромбе равны, то два угла по 120°, и два угла по 60°
ответ. 120 град., 60 град., 120 град., 60 град.
подробнее - на -
объяснение:
60°
Объяснение:
Дано: ΔАВС.
АО - медиана, ВН - высота.
АО = ВН.
Найти: ∠ВМО
Продлим АО за точку О на ОК=АО. Из точки К опустим перпендикуляр на продожение АС.
1. Рассмотрим ΔВОК и ΔАОС.
ВО = ОС (условие)
АО = ОК (построение)
Вертикальные углы равны.⇒ ∠1 = ∠2
⇒ ΔВОК = ΔАОС (по двум сторонам и углу между ними. 1 признак)
В равных треугольниках против равных сторон лежат равные углы.⇒ ∠3 = ∠4 -накрест лежащие при ВК и АС и секущей ВС.
⇒ ВК || АС.
2. Рассмотрим НВКР.
ВК || АС (п.1)
Если две прямые перпендикулярны третьей, то они параллельны между собой.⇒ ВН || КР.
При этом ВН ⊥ АР и КР ⊥АР.
⇒ НВКР - прямоугольник.
Противоположные стороны прямоугольника равны.⇒ ВН = КР.
3. Рассмотрим ΔАКР - прямоугольный.
ВН = АО (условие)
ВН = КР (п.2)
⇒ КР = АО
АК = 2АО (построение) ⇒ АК = 2 КР
Катет, лежащий против угла в 30°, равен половине гипотенузы.⇒ ∠КАР = 30°
4. Рассмотрим ΔАМН - прямоугольный.
Сумма острых углов прямоугольного треугольника равна 90°.⇒ ∠АМН = 90° - ∠КАР = 90° - 30° = 60°
∠АМН = ∠ВМО = 60°