В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Maniac0441
Maniac0441
23.05.2023 05:26 •  Геометрия

Окружность, круг, их элементы и части. Центральный угол. Урок 2 полуокружность разделена точкой на две дуги в отношении 2:3 найди градусную меру каждой дуги. ​

Показать ответ
Ответ:
dstudencheskaya
dstudencheskaya
28.06.2020 02:06
Смотрите рисунок к задаче, который приложен к ответу. На рисунке есть все построения, описанные в задаче, а именно: \triangle CDE с прямым углом \angle C = 90^{\circ}, EF — биссектриса \angle E, CF = 13, FG — искомый отрезок.
==========
Решение:
Докажем, что \triangle CEF = \triangle EFG.
1) Так как EF — биссектриса, то \angle GEF = \angle CEF (биссектриса EF делит \angle E на два равные угла).
2) \angle C =\angle FGE = 90^{\circ} (это следует из условия: так как \triangle CDE прямоугольный, то и \angle C = 90^{\circ}; так как FG — расстояние от F до DE, то \angle FGE = 90^{\circ}).
3) Так как \angle C =\angle FGE и \angle GEF = \angle CEF, то и третий угол первого треугольника равен третьему углу второго треугольника: \angle GFE = \angle EFC. Это следует из того факта, что сумма углов любого треугольника равна 180°. Тогда можно записать так:
\angle C + \angle CFE + \angle CEF = 180^{\circ} \\ 
\angle FGE + \angle GEF + \angle GFE = 180^{\circ}
Отсюда:
\angle CFE = 180^{\circ} - (\angle C + \angle CEF)\\ 
\angle GFE = 180^{\circ} - (\angle FGE + \angle GEF)
Суммы в скобках в обоих уравнениях равны (так как, как я уже отмечал выше, углы, составляющие те суммы, равны), а значит равны и разности в обоих уравнениях, а значит \angle CFE = \angle GFE.

3) Сторона EF является для обоих треугольников общей.
Собранных сведений достаточно, чтобы заключить, что \triangle CEF = \triangle EFG (второй признак равенства треугольников — по стороне и двум прилежащим к ней углам (EF — сторона, а \angle GEF = \angle CEF \,\,\,\, \angle GFE = \angle EFC — два прилежащих угла)).
Раз треугольники равны, то и все их их соответственные элементы равны. Видим, что искомой стороне FG соответствует CF, тогда:
FG = CF = 13
ответ: 13. 
=========
ответ можно проверить, геометрически (линейкой) измерив искомый отрезок FG. Смотрите второй рисунок.

Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р
Впрямоугольном треугольнике cde с прямым углом с проведена биссектриса ef,причем fc=13 см. найдите р
0,0(0 оценок)
Ответ:
vihareva08
vihareva08
17.09.2020 08:18

Обозначим треугольник АВС, С- прямой угол,

О- центр вписанной окружности, ихвестно, что цент вписанной в треугольник окружности лежит в точке пересечения биссектрис ( а , значит и набиссектрисе прямого угла)

СД- биссектриса, значит АД:ДВ=4х:3х

Опусти перпендикуляры из точки О  на катеты - ОК на катет СВ и ОМ на катет АС они равны радиусу, те 7см.

тк угол С прямой, то ОК=МС=МО=СК=7см.

Вспомним, сто отезки касательных, проведенных из одной точки к окружности равны ( легко доказать) Т.е. КВ=ДВ=3х  и АМ=АД =4х.

Получилось

АС=АМ+МС=4х+7

АВ=АД+ДВ=4х+3х=7х

СВ=СК+КВ=7+3х

Теперь составим уравнение применив теорему Пифагора

(4х+7)^{2}+(7+3х)^{2)=(7х)^{2}

решив его. найдем х потом умножим на 3 и на 4

 

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота