Определи длину большей боковой стороны прямоугольной трапеции, если один из углов трапеции равен 60°, меньшее основание — 4 см, большее основание — 10,1 см. ответ: искомая боковая сторона равна см.
Чертим параллелограмм с острым углом слева внизу, а с большими сторонами горизонтально. Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X. Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда: AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X. Пусть АЕ=Y. Периметр треугольника AB+BE+AE=4X+4X+Y Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X Разность периметров (Y+18X)-(Y+8X)=10X. 10X=10, X=1. Периметр параллелограмма 2*(4X+9X)=26X=26. Вроде так.
Обозначаем вершины начиная с нижней левой по часовой стрелке A,B,C,D. Обозначим АВ=CD=4X, BC=AD=9X.
Пусть дана биссектриса угла A. Она пересекает сторону ВС в точке Е. Проводим EF параллельно АВ. ABCD -ромб, АЕ его диагональ. Тогда:
AB=BE=EF=AF=CD=4X, EC=FD=9X-4X=5X.
Пусть АЕ=Y.
Периметр треугольника AB+BE+AE=4X+4X+Y
Периметр оставшейся части AE+EC+CD+AD=Y+5X+4X+9X
Разность периметров (Y+18X)-(Y+8X)=10X.
10X=10, X=1.
Периметр параллелограмма 2*(4X+9X)=26X=26.
Вроде так.
Объяснение:
ABCA1B1C1 - призма
ABC - основание (AC=5; AB=12; BC=13
ACB1 - сечение
Основание АВС:
ВК - высота к АС
p = (5+12+13)\2 = 15 - полупериметр
По формуле Герона площадь АВС:
S (АВС) = V[15*(15-5)(15-12)(15-13)] = V(15*10*3*2) = V900 = 30 - площадь АВС
А по другой формуле площадь АВС:
S (ABC) = 1\2 * AC * BK ---> и из неё высота будет:
BK = 2*S (ABC) \ AC = 2*30 \ 5 = 12 - высота
Треугольник KBB1:
< KBB1 = 90 град; < BKB1 = 30 град. =>
BB1 = BK * tg BKB1 = BK * tg 30 = 12 * V3\3 = 4V3 - высота призмы
Объём призмы:
V = S (ABC) * BB1 = 30 * 4V3 = 120V3 - объем призмы.