1) треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.
2) 2 треугольника называются равными, если
- у них равны 2 стороны и угол между ними
- у них равны 1 сторона и прилегающие к ним 2 угла
- у них равны 3 стороны
3) медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
4) высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую, которая содержит его противоположную сторону.
5) биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
6) равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.
7) свойства равнобедренного треугольника.
в равнобедренном треугольнике углы при основании равны.в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.если в треугольнике два угла равны, то он равнобедренный.если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.
8) треугольник, у которого все стороны равны, называется равносторонним или правильным.
9) свойства равностороннего треугольника.
все стороны равны; углы каждого равностороннего треугольника равны 60°; каждая высота также является медианой и биссектрисой и они равны между собой; каждая медиана является также высотой и биссектрисой; каждая биссектриса является высотой и медианой; точка пересечения высот, биссектрис и медиан разделяется в отношении 2: 1; площадь равностороннего треугольника: высоты, медианы и биссектрисы равностороннего треугольника равны: радиус описанной окружности
10) i признак (по двум сторонам и углу между ними). если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
11)ii признак (по стороне и прилежащим углам) если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
12)iii признак (по трем сторонам). если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
Прямая ав ║ пл. scd, т.к. ав║cd. поэтому расстояние oт т. а до плоскости scd равно расстоянию от любой точки прямой ав до этой плоскости, в том числе и от точки м - середины отрезка ав, до плоскоти scd. δscd: проведём медиану sn , sn также высота δscd, sn⊥cd. δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd. mh - высота δsmn , mh⊥sn . cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒ cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn . mh - перпендикуляр к плоскости scd. значит, mh - расстояние от ав до пл. scd . точка о - центр основания авсd. δaos - прямоугольный:
ответ:
1) треугольником называется фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.
2) 2 треугольника называются равными, если
- у них равны 2 стороны и угол между ними
- у них равны 1 сторона и прилегающие к ним 2 угла
- у них равны 3 стороны
3) медианой треугольника называется отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
4) высотой треугольника называется перпендикуляр, опущенный из вершины треугольника на прямую, которая содержит его противоположную сторону.
5) биссектрисой треугольника называется отрезок биссектрисы угла треугольника, соединяющий вершину с точкой на противолежащей стороне этого треугольника.
6) равнобедренный треугольник — это треугольник, в котором две стороны равны между собой по длине.
7) свойства равнобедренного треугольника.
в равнобедренном треугольнике углы при основании равны.в равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.если в треугольнике два угла равны, то он равнобедренный.если в треугольнике медиана является и высотой, то такой треугольник равнобедренный.если три стороны одного треугольника равны соответственно трем сторонам другого треугольника, то такие треугольники равны.8) треугольник, у которого все стороны равны, называется равносторонним или правильным.
9) свойства равностороннего треугольника.
все стороны равны; углы каждого равностороннего треугольника равны 60°; каждая высота также является медианой и биссектрисой и они равны между собой; каждая медиана является также высотой и биссектрисой; каждая биссектриса является высотой и медианой; точка пересечения высот, биссектрис и медиан разделяется в отношении 2: 1; площадь равностороннего треугольника: высоты, медианы и биссектрисы равностороннего треугольника равны: радиус описанной окружности10) i признак (по двум сторонам и углу между ними). если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
11)ii признак (по стороне и прилежащим углам) если сторона и прилежащие к ней углы одного треугольника равны соответственно стороне и прилежащим к ней углам другого треугольника, то такие треугольники равны.
12)iii признак (по трем сторонам). если три стороны одного треугольника равны трем сторонам другого треугольника, то такие треугольники равны.
δscd: проведём медиану sn , sn также высота δscd, sn⊥cd.
δsmn - равнобедренный, sm=sn как медианы равных треугольников sab и scd.
mh - высота δsmn , mh⊥sn .
cd⊥sn и cd⊥mn , sn и mn пересекаются, принадлежат пл. smn ⇒
cd⊥ плоскости smn ⇒ cd⊥ mh , лежащей в пл. smn .
mh - перпендикуляр к плоскости scd.
значит, mh - расстояние от ав до пл. scd .
точка о - центр основания авсd.
δaos - прямоугольный: