Проведём высоту ВД=АВ*cos30=4*0,866=3,46. Из точки М проведём к АС высоту МЕ. Получим два прямоугольных подобных треугольника ДВС и ЕМС(поскольку у низ по условию ВМ=МС). МЕ параллельна ВД и проходит через середину ВС следовательно это средняя линия треугольника ДВС. Отсюда МЕ=ВД/2=1,73. И ДЕ=ЕС. Косинус угла АМЕ равен cos аме=МЕ/AM=1,73/(корень из 19)=0,3967. Отсюда угол =66гр. 24 мин. Синус этого угла равен =0,92. Отсюда АЕ=АМ*sinАМЕ=4,36*0,92=4. АС=АЕ+ЕС=4+2=6.(поскольку ДЕ=ЕС=АЕ-АД=4-2=2). Отсюда площадь треугольника S=1/2*АС*ВД=1/2*6*3,46=10,38.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Проведём высоту ВД=АВ*cos30=4*0,866=3,46. Из точки М проведём к АС высоту МЕ. Получим два прямоугольных подобных треугольника ДВС и ЕМС(поскольку у низ по условию ВМ=МС). МЕ параллельна ВД и проходит через середину ВС следовательно это средняя линия треугольника ДВС. Отсюда МЕ=ВД/2=1,73. И ДЕ=ЕС. Косинус угла АМЕ равен cos аме=МЕ/AM=1,73/(корень из 19)=0,3967. Отсюда угол =66гр. 24 мин. Синус этого угла равен =0,92. Отсюда АЕ=АМ*sinАМЕ=4,36*0,92=4. АС=АЕ+ЕС=4+2=6.(поскольку ДЕ=ЕС=АЕ-АД=4-2=2). Отсюда площадь треугольника S=1/2*АС*ВД=1/2*6*3,46=10,38.
Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.