основою похилого паралелепіпеда є ромб сторона якого дорівнює 60 см. Площина діагонального перерізу що проходитьчерез більшу діагональ основи перпендикуляра до площини основи. площа цього перерізу дорівнює 72 дм ^2. знайти меншу діагональ основи якщо бічне ребро парелелепіпеда дорівнює 80 см і утворює з площою основи кут 60 градусів
12. Если это диаметры одной и той же окружности (а как известно диаметр проходит через центр) то они не могут быть параллельны.
13. ,
где x и y углы.
14. представим угол А за Х;
x + 5х + x + 40 = 180;
7x = 140;
x = 20 градусов.
соответственно угол А = 20; угол В = 60 градусов, а угол С = 100 градусов.
15. Так как BD - это высота, то углы BDC и BDA прямые. Также BD - биссектриса угла MDH. Следовательно углы HDC и MDA равны. А так как треугольник ABC - равнобедренный, то и отрезки HC и MA равны. Но все равно желательно нарисовать.
16. Общий угол при пересечении прямых = 180 градусов. Значит второй угол у одной из параллельных прямых равен 180 - 112 = 68 градусов. У второй параллельной прямой то же самое только зеркально отображено. Тоже желательно нарисовать.
17. Треугольник АВС является равнобедренным. А у него углы у основания одинаковые. А так как углы CAD и BAC равны, то можно прийти к выводу что и стороны у этой фигуры равны. Но это не обязательно квадрат.
Хух.
1. Угол между наклонной к плоскости и плоскостью - это угол между наклонной и ее проекцией на плоскость. Искомый угол - угол МАО. Высота правильного треугольника равна h=(√3/2)*a = (√3/2)*2√3=3. АО=(1/3)*h = 1 (свойство медианы). Tg(<MAO) = MO/AO = √3.
ответ: α = arctg√3 = 60°
2. Искомый угол - угол между наклонной и ее проекцией, то есть угол АВК. Sin(<ABK) = KA/KB = AC*tg60/5 = 5√3/11. <ABK = arcsin(0,787) ≈ 51,9°.
3. Опустим перпендикуляры SP и SH из точки S к сторонам АВ и АD соответственно. Прямоугольные треугольники APS и AHS равны по гипотенузе и острому углу. Значит АР=АН и АРОН - квадрат. тогда АО = АН*√2 (диагональ квадрата), АS = 2*АН (в треугольнике ASH катет АН лежит против угла 30°, а AS - гипотенуза). Косинус искомого угла (между наклонной AS и плоскостью АВСD, равного отношению проекции наклонной к наклонной) = АО/AS = АН√2/(2*АН) = √2/2.
ответ: искомый угол равен 45°.