Чертеж наверное сам нарисуешь. Вот рассуждения: т.к. AK - биссектриса, то ∠MAK = ∠CAK. Т.к. AM = MK, то ΔAMK - равнобедренный, поэтому ∠MAK = ∠MKA. Поэтому ∠CAK = ∠MKA - т.е. равны накрест лежащие углы при прямых MK и AC, и секущей AK, то отсюда следует, что MK║AC. Ч.т.д.
∠MAK = ∠MKA.
Поэтому ∠CAK = ∠MKA - т.е. равны накрест лежащие углы при прямых MK и AC, и секущей AK, то отсюда следует, что MK║AC. Ч.т.д.