Progress Cheek 1 I variant 1.Complete the sentences in past perfect 1. When I came home, mother already (to cook) dinner. 2. When father returned from work, we already (to do) our homework. 3. When the teacher entered the classroom, the pupils already (10 open) their books. 4. Kate gave me the book which she (to buy) the day before 5. Nick showed the teacher the picture which he (to draw). 6. The boy gave the goats the grass which he (to bring) from the ficld 2. Write the sentences in the interrogative form and make general and who-questions. 1. Rose had written the letter by 7 о'clock yesterday. 2 Mrs Rogers had cooked the dinner by 6 о'clock last Sunday. 3. Jane and Ann had built the toy house by four o'clock yesterday. 3. Choose the right words to complete the sentences. 1) That day Jane felt so sad ahe could (ery/smile). 2) The puplls (ended/ finished) decorating the hall late in the afternoon. 3) Do you watch matehes of your favourite football (сrеw/teаm) on television? 4) We are playing basketball in the gyт, would you 1ike to joln (- /1in)? 5) No one liked the dish, we thought it was rather (Lasteful/tasteless). 6) In the I variant 1.Compleie the sentences in past рerfect b) hie
Progress Cheek 1 I variant 1.Complete the sentences in past perfect 1. When I came home, mother already (to cook) dinner. 2. When father returned from work, we already (to do) our homework. 3. When the teacher entered the classroom, the pupils already (10 open) their books. 4. Kate gave me the book which she (to buy) the day before 5. Nick showed the teacher the picture which he (to draw). 6. The boy gave the goats the grass which he (to bring) from the ficld 2. Write the sentences in the interrogative form and make general and who-questions. 1. Rose had written the letter by 7 о'clock yesterday. 2 Mrs Rogers had cooked the dinner by 6 о'clock last Sunday. 3. Jane and Ann had built the toy house by four o'clock yesterday. 3. Choose the right words to complete the sentences. 1) That day Jane felt so sad ahe could (ery/smile). 2) The puplls (ended/ finished) decorating the hall late in the afternoon. 3) Do you watch matehes of your favourite football (сrеw/teаm) on television? 4) We are playing basketball in the gyт, would you 1ike to joln (- /1in)? 5) No one liked the dish, we thought it was rather (Lasteful/tasteless). 6) In the I variant 1.Compleie the sentences in past рerfect b) hie
1. Если треугольники подобны, то отношения сторон у них равны.
Пусть х - коэффициент пропорциональности.
Тогда стороны треугольника 2x, 5x, 4x.
Меньшая сторона 2х = 22, тогда
х = 11 см
Большая сторона равна 5х:
11 · 5 = 55 см
2. Площади подобных треугольников относятся как квадрат коэффициента подобия.
Если сходственные стороны относятся как 3 : 5, то
Sabc : Smnp = 9 : 25
Учитывая, что Smnp = Sabc + 16, получаем уравнение:
Sabc : (Sabc + 16) = 9 : 25
25·Sabc = 9·Sabc + 144
16·Sabc = 144
Sabc = 9 см²
3. Пусть х - сторона квадрата.
Из треугольника, образованного двумя сторонами квадрата и диагональю по теореме Пифагора:
x² + x² = 16²
2x² = 256
x² = 128
x = 8√2 см
Р = 8√2 · 4 = 32√2 см
4. Из прямоугольного треугольника ACD по теореме Пифагора найдем АС:
АС = √(AD² - CD²) = √(225 - 64) = √161
Площадь параллелограмма равна произведению стороны на проведенную к ней высоту:
Sabcd = CD · AC = 8 · √161 = 8√161 см²
5. ΔАВН: ∠Н = 90°, ∠А = 60°, ⇒ ∠В = 30°. Напротив угла в 30° лежит катет, равный половине гипотенузы, АН = АВ/2 = 4 см.
По теореме Пифагора ВН = √(АВ² - АН²) = √(64 - 16) = √48 = 4√3 см
АН : HD = 2 : 3, ⇒ HD = 6 см.
HBCD - прямоугольник, ⇒ ВС = HD = 6 см.
Sabcd = (AD + BC)/2 · BH = (10 + 6)/2 · 4√3 = 32√3 см
6. ΔACD прямоугольный, DE его высота. По свойству пропорциональных отрезков в прямоугольном треугольнике:
DE² = AE · EC = 8 · 4 = 32
DE = √32 = 4√2 см
ΔAED: по теореме Пифагора
AD = √(AE² + ED²) = √(64 + 32) = √96 = 4√6 см
ВС = AD = 4√6 см
ΔCDE: по теореме Пифагора
CD = √(EC² + ED²) = √(16 + 32) = √48 = 4√3 см
АВ = CD = 4√3 см
а) АВ : ВС = 4√3 / (4√6) = 1/√2 = √2/2
б) Pabcd = (AB + BC)·2 = (4√3+ 4√6)·2 = 8·(√3 + √6) см
в) Sabcd = AB·BC = 4√3 · 4√6 = 16√18 = 48√2 см
7. Так как треугольники подобны,
BC : BD = BD : AD
BD² = BC · AD = 8 · 12,5 = 100
BD = 10 см
8. Треугольник АВС равнобедренный, медиана ВН является и высотой.
Из ΔАВН по теореме Пифагора:
ВН = √(АВ² - АН²) = √(625 - 49) = √576 = 24 см
Медианы точкой пересечения делятся в отношении 2 : 1, считая от вершины:
ВО : ОН = 2 : 1, ⇒ ОН = ВН/3 = 8 см
Из треугольника АОН по теореме Пифагора:
АО = √(ОН² + АО²) = √(64 + 49) = √113 см
АО = 2/3 АМ
АМ = √113 · 3/2 = 3√113/2 см
В равнобедренном треугольнике медианы, проведенные к боковым сторонам равны, значит
СК = АМ = 3√113/2 см