Периметр треугольника ABC равен 6 см, периметр треугольника DEF равен 8 см.
Докажи, что периметр шестиугольника PKLMNR меньше 7 см.
1. Рассмотри треугольники PAK, KDL, LBM, MEN, NCR и RFP, напиши для каждого из них неравенство треугольника для сторон, которые также являются сторонами шестиугольника
2. Если сложить левые и правые стороны правильных неравенств, то получится правильное неравенство.
Которые из величин задания получились в левой стороне после сложения?
1,Удвоенный периметр треугольника DEF
2,Периметр треугольника ABC
3,Удвоенный периметр треугольника ABC
4,Периметр треугольника DEF
5,Удвоенный периметр шестиугольника PKLMNR
6,Периметр шестиугольника PKLMNR
3.Если к обеим сторонам правильного неравенства добавить одну и ту же величину, то получится правильное неравенство.
Добавь к обеим сторонам полученного в предыдущем шаге правильного неравенства PK+KL+LM+MN+NR+RP.
Которые из величин задания получились в левой стороне после сложения?
1.Периметр треугольника DEF
2.Периметр шестиугольника PKLMNR
3.Удвоенный периметр шестиугольника PKLMNR
4.Периметр треугольника ABC
5.Удвоенный периметр треугольника DEF
6.Удвоенный периметр треугольника ABC
4. Которые из величин задания получились в правой стороне после сложения?
1.Удвоенный периметр треугольника ABC
2.Удвоенный периметр треугольника DEF
3.Периметр шестиугольника PKLMNR
4.Периметр треугольника ABC
5.Удвоенный периметр шестиугольника PKLMNR
6.Периметр треугольника DEF
5. Чему равна правая сторона полученного неравенства, если использовать данные числовые значения?
ответ:
Что необходимо сделать с обеими сторонами полученного неравенства, чтобы доказать, что периметр шестиугольника PKLMNR меньше 7 см?
1.Вычитать 2
2.Добавить 2
3.Делить на 2
4.Умножить на 2
5.Невозможно доказать
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
Путешествие во времени — гипотетическое перемещение человека или каких-либо объектов из настоящего в или будущее, в частности, с технического устройства, называемого «машиной времени».
Фотография 1941 года на открытии Голд-бридж в Британской Колумбии (Канада) запечатлела якобы путешественника во времени. В действительности, облик мужчины соответствует эпохе и отличается от собравшихся тем, что те одеты более официально. Очки «путешественника — хипстера» изобретены ещё в 1920-е годы, на футболке угадывается логотип «Монреаль Марунз»[1][2].
Объяснение:
вот все правильно