46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)
33,9(м^3).
Объяснение:
Дано:
R(2)=2R(1)
S(осев.сеч.)=36м²
S(бок.пов.)=S(осн.1)+S(осн.2)
V(усеч. кон.)= ?
S(осн.2)=pi*R(2)²=pi*(2*R(1))²=4pi*R(1)²
S(осн.1)=pi*R(1)²
S(бок.пов.)=4pi*R(1)²+pi*R(1)²=5pi*R(1)²
5pi*R(1)²=36
R(1)²=36/5pi
R(1)=√36/5pi=6/√5pi
S(бок.пов.усеч.кон.)=S(бок.пов.2)-S(бок.пов.1)=
=1/2*C(2)L(2)-1/2*C(1)L(1)=
=1/2*2pi*2R(1)*2L(1)-1/2*2pi*R(1)*L(1)=
=4*pi*R(1)*L(1)-pi*R(1)*L(1)=3pi*R(1)*L(1)=36
Осевые сечения большого и малого конусов
являются подобными треугольниками .
По условию коэффициент подобия равен 2.
⇒ L(2)/L(1)=2
R(2)/R(1)=2
h(2)/h(1)=2
L(1)=36/3*pi*R(1)*L(1)
L(1)=12/pi*R(1)
L(1)=12/pi/R(1)=12*√5pi/pi*6=2*√5pi/pi
V(усеч.кон.)=V(кон.2)-V(кон.1)=
=1/3S(осн.2)*h(2)-1/3S(осн.1)*h(1)=
1/3*pi*(2R(1))²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*4R(1)²*2h(1)-1/3*pi*R(1)²*h(1)=
=1/3*pi*R(1)²(8h(1)-h(1))=1/3*pi*R(1)²*7h(1)
Высота конуса перпендикулярна основанию.
Выcота конуса,образующая и радиус основания
образуют прямоугольный треугольник ⇒ по теореме
Пифагора: h(1)²=L(1)²-R(1)²
L(1)²=(2*√5pi/pi)²=4*5*pi/pi²=20/pi
h(1)²=L(1)²-R(1)²
h(1)²=20/pi-36/5pi=100/5pi-36/5pi=64/5pi
h(1)=√64/5pi=8/√5pi
V(усеч.кон)=1/3*pi*R(1)² *7*h(1)=
=1/3pi*36/5pi*7*8/√5pi=134,4/(5pi)=
=33,9(м^3).
46. Если скалярное произведение векторов равно нулю, то векторы перпендикулярны.
-2*3-у+1*2=0; у=2-6; у=-4
42. 1)(3;0;-4)*(5;0;-12)=15+48=63; Длина вектора а равна √(9+16)=5; вектора b равна √(25+144)=13 ; cosα=63/(5*13)=63/65; α=arccos(63/65)
2)(-2;2;-1)*(-6;3;6)=12+6-6=12; Длина вектора а равна √(4+4+1)√9=3; вектора b равна √(36+9+36)=9 ; cosα=12/(9*3)=4/9; α=arccos(4/9)
3) а+b=(1;-1;2)+(0;2;1)=(1;1;3)
а-b=(1;-3;1); (а+b)*(а-b)=(1;1;3)(1;-3;1)=1-3+3=1; Длина вектора а+b равна √(1+1+9)√11; вектора а-b равна √(1+9+1)=√11 ; cosα=1/(√11*√11)=1/11; α=arccos(1/11)