В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
Точка Р - середина стороны АВ. АК=АВ/2 ⇒АК=АР. Треугольник КАР равнобедренный, АК=АР. Обозначим ∠РКА=α ⇒ ∠КРА=∠BРД=α. ВМ - высота тр-ка АВС. ВМ и КД пересекаются в точке О. Прямоугольные тр-ки КОМ и ВДО подобны, т.к. ∠КОМ=∠ВОД как вертикальные, значит ∠ОВД=∠РКА=α. ВМ - высота и биссектриса равнобедренного тр-ка АВС, значит ∠АВС=2α. В прямоугольном тр-ке РВД ∠BРД+∠PBД=α+2α=90°, 3α=90°, α=30°. Катет ВД лежит напротив в этого угла, значит РВ=2ВД=2·2=4. АВ=2РВ=2·4=8. В равнобедренном тр-ке АВС угол при вершине 2α=60°, значит он правильный. Периметр тр-ка АВС: Р=3АВ=3·8=24 - это ответ.
В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -
- угол между векторами СА и СВ равен ∠АСВ=90°;
- угол между векторами ВА и СА равен ∠САВ=50°;
- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°
О нас
Треугольник КАР равнобедренный, АК=АР.
Обозначим ∠РКА=α ⇒ ∠КРА=∠BРД=α.
ВМ - высота тр-ка АВС. ВМ и КД пересекаются в точке О.
Прямоугольные тр-ки КОМ и ВДО подобны, т.к. ∠КОМ=∠ВОД как вертикальные, значит ∠ОВД=∠РКА=α. ВМ - высота и биссектриса равнобедренного тр-ка АВС, значит ∠АВС=2α.
В прямоугольном тр-ке РВД ∠BРД+∠PBД=α+2α=90°,
3α=90°,
α=30°. Катет ВД лежит напротив в этого угла, значит РВ=2ВД=2·2=4.
АВ=2РВ=2·4=8.
В равнобедренном тр-ке АВС угол при вершине 2α=60°, значит он правильный.
Периметр тр-ка АВС: Р=3АВ=3·8=24 - это ответ.