Площадь квадрата abcd равна 16см². биссектриса вт треугольника авd пересекает диагональ ас в точке о.вычеслите длину радиуса окружности,описанной около треугольника аоd(ответ должен получиться 2: (sin40°*sin65°)
В основании пирамиды лежит квадрат.Смотрим Δ, в котором катет - высота пирамиды, гипотенуза боковое ребро и второй катет - это половина диагонали квадрата . Ищем эту половину по т. Пифагора. х² = 220² - 150² = (220 -150)(220 + 150) = 50·370= 18500 Диагонали квадрата делят его на4 прямоугольных равных Δ. рассмотрим один. В нём гипотенуза= стороне квадрата и катеты - это половинки диагоналей. По т. Пифагора у² = х² +х² у² = 18500 + 18500 = 37000 Площадь основания = у² = 37000
Допустим 3 см - длина основания. Тогда длины боковых сторон найдём из уравнения 2х+3=18, где х - длина боковой стороны. 2х=18-3=15 х=15/2=7,5 (см) - не подходит по условию задачи, так как длины сторон должны быть целочисленными. Значит, 3 см - длина боковой стороны. Длина другой боковой стороны также равна 3 см. Тогда длину основания найдём из уравнения 3+3+х=18, где х - длина основания. х=18-3-3=12 (см). ответ: две другие стороны равны 3 см и 12 см. * Замечу, что такого треугольника не может быть, так как в соответствии с неравенством треугольника сумма меньших сторон любого треугольника должна быть больше большей стороны треугольника. В нашем случае должно быть, чтобы 3+3>12, то есть 6>12, а это ложь. Поэтому ответом должно быть пустое множество.
х² = 220² - 150² = (220 -150)(220 + 150) = 50·370= 18500
Диагонали квадрата делят его на4 прямоугольных равных Δ. рассмотрим один. В нём гипотенуза= стороне квадрата и катеты - это половинки диагоналей.
По т. Пифагора у² = х² +х²
у² = 18500 + 18500 = 37000
Площадь основания = у² = 37000
2х=18-3=15
х=15/2=7,5 (см) - не подходит по условию задачи, так как длины сторон должны быть целочисленными.
Значит, 3 см - длина боковой стороны. Длина другой боковой стороны также равна 3 см. Тогда длину основания найдём из уравнения 3+3+х=18, где х - длина основания.
х=18-3-3=12 (см).
ответ: две другие стороны равны 3 см и 12 см.
* Замечу, что такого треугольника не может быть, так как в соответствии с неравенством треугольника сумма меньших сторон любого треугольника должна быть больше большей стороны треугольника. В нашем случае должно быть, чтобы 3+3>12, то есть 6>12, а это ложь.
Поэтому ответом должно быть пустое множество.