S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
Р=(30+4)*2=68
пусть уменьшенная длина будет 30-у
уменьшенная ширина 4-х
новая площадь должна равняться 120/2
новый периметр 68-22=46
полупериметр 46/2=23
составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2
(30-у)+(4-х)=46/2
(30-у)(4-х)=60
30-у+4-х=23
(30-у)(4-х)=60
х+у=11
(30-у)(4-х)=60 (1)
х=11-у (2)
подставляем наш х в (1)
получаем
(30-у)(4-х(11-у))=60
(30-у)(у-7)=60
30у-210-у²+7у-60=0
-у²+37у-270=0
Д=37²-4(-1)(-270)=1369-1080=289=17²
у1=-27 нам не подходит т.к. сторона не может быть отрицательной
у2=10
подставляем в (2)
х=11-у=11-10=1
ширину надо уменьшить на 10 см, длину на 1 см
Как известно, площадь треугольника можно вычислить в данном случае по формуле
S=AB*h/2, где h - высота, проведенная к АВ. (1)
Можно вычислить и по-другому.
S=BC*H/2, где H - высота, проведенная к ВС. H надо найти. (2)
Теперь приравняем правые части формул (1) и (2)
AB*h/2=BC*H/2
Умножим обе части на 2, получим
AB*h=BC*H (3)
По условию задачи АВ=16 см, ВС=22 см, h=11 см. Подставим все это в формулу (3)
16*11=22*Н
Сократим обе части на 11
16=2*Н
Сократим обе части на 2
Н=8.
ответ: Н=8 см- высота, проведенная к стороне ВС