Поскольку объем призмы равен произведению площади основания на высоту призмы, решение сводится к нахождению высоты призмы (так как площадь основания - площадь прямоугольного треугольника равна (1/2)*АВ*ВС=6). Высота призмы равна высоте пирамиды В1АВС, в которой боковые ребра равны, (то есть ВВ1=АВ1=СВ1). Если все боковые ребра пирамиды равны между собой, то вершина пирамиды В1 проецируется в центр описанной около основания окружности. Центр описанной около прямоугольного треугольника окружности лежит на середине АС гипотенузы, радиус этой окружности равен половине гипотенузы. АА1С1С- квадрат, поэтому СС1=АС. ВВ1С1С - параллелограмм (боковая грань призмы), поэтому ВВ1=СС1=АС. По Пифагору гипотенуза АС=√(АВ²+ВС²)=√(144+1)=√145. Тогда радиус описанной окружности ВН=(√145)/2. Из прямоугольного треугольника ВНВ1 найдем по Пифагору В1Н=√(В1В²-ВН²)=√(145-145/4)=√435/2. Тогда объем призмы равен Sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.
Пирамида правильная - в основании квадрат Рассмотрим треугольник образуемый боковыми ребрами пирамиды и диагональю основания (квадрата). Пусть это будет треугольник AKC. По условию задачи угол КСА и угол КАС равны по 45 градусов, значит угол AKC = 90 градусов, то есть треугольник AKC прямой и равнобедренный. AC^2=KC^2+AK^2=2*KC^2 AC^2 = 2*18^2 = 648 AC = 2 корня 162 КО - высота пирамиды Из треугольника ОКС имеем КО^2=KC^2-OC^2= 324 - 162 = 162 КО = 2 корня 162 Диагональ основания (квадрата) равна 2 корня 162 Значит сторона квадрата равна a^2 648/2=324 = >корень из 324 Площадь основания равна 324 объем равен (1/3)*S*H=(1/3)*324*2 корня 162 = 216 корня из 162
Если все боковые ребра пирамиды равны между собой, то вершина пирамиды В1 проецируется в центр описанной около основания окружности. Центр описанной около прямоугольного треугольника
окружности лежит на середине АС гипотенузы, радиус этой окружности равен половине гипотенузы.
АА1С1С- квадрат, поэтому СС1=АС.
ВВ1С1С - параллелограмм (боковая грань призмы), поэтому ВВ1=СС1=АС.
По Пифагору гипотенуза АС=√(АВ²+ВС²)=√(144+1)=√145. Тогда радиус описанной окружности ВН=(√145)/2. Из прямоугольного треугольника ВНВ1 найдем по Пифагору В1Н=√(В1В²-ВН²)=√(145-145/4)=√435/2.
Тогда объем призмы равен
Sосн*h = (1/2)12*1*√435/2 =3√435см ≈ 62,6см³.