1. это геометрическая фигура, состоящая из трех точек, не лежащих на одной прямой, и трех отрезков, соединяющих эти точки 2. это сумма длин всех его сторон 3.которые совпадают при наложении 4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы 5.это прямая, пересекающую другую прямую под углом 90 градусов 6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3 7.это прямая проходящая через вершину угла и делящая его пополам. 3 8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3 9.у которого две стороны равны 10.боковые 11.у которого все стороны равны 12. в равнобедренном треугольники углы при основании равны 13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой 14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны 15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны 16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны. 17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки 18. это точка, от которой расположены все точки окружности 19. отрезок соединяющий центр окружности с любой точкой окружности 20. это хорда проходящая через центр 21. это отрезок соединяющие любые две точки окружности
В ромбе все стороны равны. Значит, треугольники ABC и СDA, составляющие ромб ABCD, - равнобедренные. Площадь треугольника равна S = 1/2 a*h, где а = |АС| - основание/, которое является диагональю ромба, а h - высота, являющаяся частью второй диагонали - BD. Треугольники ABC и СDA равны по 3 сторонам (боковые стороны = стороны ромба равны, а основание = диагональ ромба - общее) . Поэтому площадь этих треугольников равна, и, следовательно, высоты тоже равны. Т. е. h = 1/2|BD|. Тогда S(ABCD) = 2S(ABC) = 2*1/2*|AC|*1/2|BD| = 1/2|AC|*|BD|
2. это сумма длин всех его сторон
3.которые совпадают при наложении
4.это утверждения, справедливость которого устанавливается путем рассуждения. эти рассуждения и есть док-ва теоремы
5.это прямая, пересекающую другую прямую под углом 90 градусов
6.это отрезок соединяющий вершину треугольника с серединой противоположной стороны. 3
7.это прямая проходящая через вершину угла и делящая его пополам. 3
8. перпендикуляр проведенный из вершины к прямой,содержащей противоположную сторону.3
9.у которого две стороны равны
10.боковые
11.у которого все стороны равны
12. в равнобедренном треугольники углы при основании равны
13.биссектриса равнобедренного треугольника так же может являться и высотой, и медианой
14.если две стороны и угол между ними одного треугольника соответственно равны двум углам и углу между ними другого треугольника, то такие треугольники равны
15.если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника,то такие треугольники равны
16. если три стороны одного треугольника соответственно раны трем сторонам другого треугольника, то такие треугольники равны.
17. это геометрическая фигура состоящая из точек, равноудаленных от заданной точки
18. это точка, от которой расположены все точки окружности
19. отрезок соединяющий центр окружности с любой точкой окружности
20. это хорда проходящая через центр
21. это отрезок соединяющие любые две точки окружности
Значит, треугольники ABC и СDA, составляющие ромб ABCD, - равнобедренные.
Площадь треугольника равна S = 1/2 a*h, где а = |АС| - основание/, которое является диагональю ромба, а h - высота, являющаяся частью второй диагонали - BD.
Треугольники ABC и СDA равны по 3 сторонам (боковые стороны = стороны ромба равны, а основание = диагональ ромба - общее) .
Поэтому площадь этих треугольников равна, и, следовательно, высоты тоже равны. Т. е. h = 1/2|BD|.
Тогда S(ABCD) = 2S(ABC) = 2*1/2*|AC|*1/2|BD| = 1/2|AC|*|BD|