Последовательно соединяя точки (-4; -5). (-4; -4), (-3; -4), (-2;-3) и (-2;-5) на координатной плоскости, постройте пятиугольник Ф1.
а) Постройте фигуру Ф2, полученную из Ф1 с параллельного переноса на
вектор р(-1;1).
b) Постройте фигуру Ф3, полученную из Ф2, с симметрии относительно
прямой у =-x-1.
c) Постройте фигуру Ф4, полученную из Ф3; с симметрии относительно точки
(1:1).
d) Постройте фигуру Ф5, полученную из Ф поворота вокруг точки (3;-2)
против часовой стрелки на 90°.
улицы-подледащее,существительное;
в-предлог;
петербурге-обстоятельство,существительное;
образованы-сказуемое,глагол;
ранее-обстоятельство,наречие;
домов-дополнение,существительное;
и-союз;
дома-подлежащее,существительное;
только-обстоятельство,наречие;
восполнили-сказуемое,глагол;
их-личное местоимение,дополнение;
линии-дополнение, существительное.
(нужно списать предложение подписать части речи, выделить все члены предложения).
обстоятельство-пунктир точка;
дополнение-пунктиром.
(невоскл.,повест.,сложн.,распр.)
теорема. прямая, проведенная в плоскости через основание наклонной перпендикулярно к её проекции на эту плоскость, перпендикулярна и к самой наклонной.
рассмотрим следующий рисунок.
ah - перпендикулярен плоскости α. am это наклонная в плоскости α; a - прямая, проведенная в плоскости α через точку м перпендикулярно к проекции hm наклонной. теперь, докажем, что прямая а перпендикулярна ам. для этого рассмотрим плоскость amh.
по условию прямая а перпендикулярна нм. также прямая а перпендикулярна ан, так как ан перпендикулярна плоскости α. прямые нм и ан принадлежат плоскости анм и пересекаются. из этих трех пунктов следует, что прямая а перпендикулярна плоскости амн, значит, она перпендикулярна любой прямой, которая принадлежит плоскости амн.
так как прямая ам принадлежит плоскости амн, значит прямая a и прямая ам перпендикулярны между собой. что и требовалось доказать.
так как в теореме присутствуют три перпендикуляра, ан, нм и ам, теорема называется теоремой о трех перпендикулярах. все три прямых угла показаны на рисунке, который в начале доказательства. помимо основной теоремы о трех перпендикулярах, существует и обратная теорема о трех перпендикулярах.
обратная теорема
прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к её проекции.
. отрезок ad перпендикулярен к плоскости равнобедренного треугольника авс. известно, что ав = ас = 5см, вс = 6 см, ad = 12 см. найти расстояние от точки а до прямой вс.
решение.
пусть точка е это середина вс. тогда вс будет перпендикулярным ае. то есть ае будет расстояние от точки а до прямой вс.
еа является проекцией de на плоскость авс. ае перпендикулярен вс, а следовательно по теореме о трех перпендикулярах de будет перпендикулярен bc. получаем, что de - это расстояние от точки d до отрезка bc. теперь будем определять ae.
ве = (1/2)*вс = 3 см.
так как треугольник аве прямоугольный, то можем по теореме пифагора найти ае.
ае^2 = ab^2-be^2 = 25-9 = 16, следовательно, ае = 4 см.
ответ. 4 см.